teen-art.ru – Краткие содержания произведений русских и зарубежных

Краткие содержания произведений русских и зарубежных

Кубическая ячейка. Кристаллические решетки. Типы кристаллических решеток. Молекулярная связь кристаллических решеток

Плотность упаковки – это доля объема кристаллической решетки, занятая атомами.

Кратчайшее расстояние между центрами двух шаров в элементарной ячейке равно двум радиусам шара – 2r. Объем шара V = 4/3r 3 , объем шаров, входящих в элементарную ячейку, V n = 4/3nr 3 , где n – кратность элементарной ячейки. Если объем элементарной ячейки V 0 , то плотность упаковки равна Р = (V n /V 0)·100 %.

Если период решетки равен а, то V 0 = а 3 , решение задачи сводится к выражению атомного радиуса через период решетки, для конкретной структуры следует определить кратчайшее межатомное расстояние, например, в алмазе 2r = a /4 (кратчайшее расстояние, равное двум атомным радиусам, составляет четверть пространственной диагонали куба).

В табл. 2.3 приведены результаты расчета плотности упаковки для различных структур.

Таблица 2.3

Плотность упаковки для различных структур

Тип решетки

К. ч.

Атомный радиус r

Кратность ячейки n

Кубическая примитивная

С повышением координационного числа плотность упаковки растет.

Заполнение междоузлий в ГЦК решетке, что соответствует повышению кратности элементарной ячейки, приводит к менее плотным упаковкам.

2.8. Связь между типом структуры, координационным числом и электрофизическими свойствами

Плотнейшие и плотные упаковки (Р = 68 – 74 %) с к.ч. 8/8 и 12/12 типичны для металлов (структуры ОЦК, ГЦК, ГПУ) .

Наименее плотные упаковки (Р = 34 % и подобными) с к.ч. 4/4 (структуры алмаза, сфалерита, вюрцита), 4/2 (куприт), 2/2 (селен) типичны для полупроводников.

Структуры с промежуточными значениями к.ч. 6/6 и плотности Р 67 %, например, типаNaCl, могут иметь и проводниковые свойства (TiO, TiN, VN, TiC и др.), и полупроводниковые свойства (PbS, PbSe, PbTe), и диэлектрические (NaCl, MgO, CaO, BaO).

Металлические вещества могут кристаллизоваться и в структуры с низкими к.ч., например, в графите к.ч. равно 4, как и в алмазе.

Важнейшие полупроводники образуют следующие структуры:

алмаза: Si,Ge, α-Sn;

сфалерита: ZnS, HgS, CdTe, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb, SiC, ZnSe, HgSe, ZnTe, HgTe;

куприта: Cu 2 O, Ag 2 O;

флюорита: Mg 2 Si, Mg 2 Ge;

вюрцита: ZnS, ZnO, CdS, CdSe;

хлорида натрия: PbS, PbSe, PbTe;

арсенида никеля: VS, VSe, FeS, FeSe.

2.9. Островные, цепные и слоистые структуры

Кроме координационных структур, в которых межатомные расстояния между всеми структурными единицами одинаковы (один тип связи), в островных, цепных и слоистых структурах (рис.2.15) могут быть выделены группы атомов, которые образуют «острова» (молекулы), непрерывно простирающиеся в одном направлении (цепи), или бесконечные в двух (слои) или трех (каркасы) измерениях. Такие структуры являются молекулярными.

На рис. 2.15 а изображены островные структуры: 1 - линейные, 2 – двумерные (квадрат), 3 – трехмерные (тетраэдр). На рис. 2.15 b показаны цепные структуры: 4 – линейная, 5 – цигзагообразная, 6 и 7 – звенья из октаэдров и тетраэдров.

Рис.2.15. Островные и цепные структуры

Контрольные вопросы

    Какая решетка называется простой, сложной?

    Чем поликристалл отличается от монокристалла?

    Что обозначает запись: (hkl), {hkl}, < hkl>, ?

    Какие значения могут принимать индексы Миллера?

    Запишите индексы Миллера плоскостей, перпендикулярных ребрам куба.

    Запишите индексы Миллера плоскостей, перпендикулярных диагоналям граней куба.

    Запишите индексы Миллера плоскостей, параллельным граням куба.

    Запишите индексы Миллера направлений, перпендикулярных граням куба.

    В чем отличие (110), {110 }, < 110>, ?

    Какое явление называется полиморфизмом?

    Что такое изоморфизм?

    Чем отличается строение стекол от строения кристаллов?

    Каковы особенности строения аморфных тел?

    Какие структуры относятся к плотным упаковкам? Как расположены в них атомы?

    В чем отличие ГПУ от ГЦК?

    Чему равны координационные числа в плотных упаковках?

    Где расположены тетраэдрические междоузлия в ГЦК решетке?

    Где расположены октаэдрические междоузлия в ГЦК решетке?

    Что называется политипизмом?

    Что называется кратностью элементарной ячейки?

    Чем отличаются различные типы кубических структур?

    Изобразите элементарные ячейки меди, кремния, NaCl, CsCl, сфалерита.

    Поясните расположение атомов в решетке вюрцита.

    На основе какой плотной упаковки строится решетка вюрцита?

    На основе какой плотной упаковки строится решетка сфалерита?

    Сколько атомов приходится на элементарную ячейку вюрцита?

    Как рассчитывается плотность упаковки кристаллических структур?

    Какие кристаллические решетки имеют максимальную плотность упаковки?

    Какие кристаллические решетки имеют минимальную плотность упаковки?

    Как связана плотность упаковки с координационным числом?

    Можно ли отнести цепные структуры к координационным? Почему?

    В чем разница между дальним и ближним порядком в твердых телах?

Все металлы в твердом состоянии имеют кристаллическое строение. Ато­мы в твердом металле расположены упорядочение и образуют кристалли­ческие решетки (рис. 1).

Рис. 1. Схемы кристаллических решеток: а – объемно-центрированная кубическая; б –гранецентрированная; в – гексагональная плотноупакованная

Кристаллическая решетка представ­ляет собой наименьший объем кристал­ла, дающий полное представление об атомной структуре металла, и носит название элементарной ячейки.

Для металлов характерны кристал­лические решетки трех видов: кубичес­кая объемно-центрированная (ОЦК), в которой атомы расположены по вершинам элементарной ячейки и один в ее центре; кубическая гранецентрированная (ГЦК), в которой атомы рас­положены по вершинам элементарной ячейки и в центрах ее граней; гексагональная плотноупакованная (ГПУ), представляющая со­бой шестигранную призму, в которой атомы расположены в три слоя.

Свойства материала зависят от вида кристаллическ4ой решетки и параметров, ее характеризующих:

1) межатомное расстояние , измеряется в ангстремах 1А°=10 -8 см

2) плотность упаковки (базис решетки – число частиц, приходящихся на одну элементарную ячейку). Кубическая простая – Б1, ОЦК – Б2, ГЦК – Б4, ГПУ – Б6.

3) координационное число (КЧ) – максимальное количество атомов равноудаленных и находящихся на ближайшем расстоянии от атома, взятоого за точку отсчета. Кубическая простая – КЧ=6, ОЦК – КЧ=8, ГЦК – КЧ=12, ГПУ – КЧ=12.

Свойства материала, определенные в направлении передней плоскости и диагональной плоскости, отличаются – это явление называется анизот­ропия , т. е. неравномерность свойств в различных направлениях. Этим свойством обладают все металлические материалы. Аморфные тела обладают свойством изотропии , т.е. имеют одинаковые свойства во всех направлениях.

Кристаллические решетки могут иметь различные структурные несовершенства, существенно изменяющие свойства материала. Реальный единичный кристалл всегда имеет свободную (наружную) поверхность, на которой уже вследствие поверхностного натяже­ния решетка искажена.

Дефекты внутреннего строения под­разделяют на точечные, линейные и плоскостные.

К точечным дефектам относятся вакансии (когда отдельные узлы кристаллической решетки не заняты ато­мами); дислоцированные атомы (если отдельные атомы оказываются в междоузлиях) или примесные атомы, ко­личество которых даже в чистых металлах весьма велико. Около таких дефектов решетка будет упруго ис­каженной на расстоянии одного-двух периодов (рис. 2, а).

Рис. 2. Дефекты кристаллической решетки : а - точечные; б - линейные; в - плоскостные

Линейные дефекты малы в двух изме­рениях и достаточно велики в третьем. К таким дефектам относятся смещение атомных плоскостей или дислокации и цепочки вакансий (рис. 2,б). Важ­нейшим свойством таких дефектов яв­ляются их подвижность внутри кри­сталла и активное взаимодействие меж­ду собой и с другими дефектами.

Изменение кристаллической решетки материала возможно под воздействием внешних факторов, а именно температуры и давления. Некоторые металлы в тве­рдом состоянии в различных тем­пературных интервалах приобретают разные кристаллические решетки, что всегда приводит к изменению их фи­зико-химических свойств.

Существование одного и того же металла в нескольких кристаллических формах носит название полиморфи­зма . Температура, при которой происходит изменение кристаллической решетки – называется температурой полиморфного превращения. На этом явлении основаны все процессы термической обработки. Полиморф­ные модификации обозначают гре­ческими буквами (a, b, g и другими, которые в виде индекса добавляют к символу элемента).

Гранецентрированная кубическая ячейка, относящаяся к кубической сингонии; Смотри также: Ячейка электролитическая ячейка гранецентрированная ячейка …

Ячейка - : Смотри также: электролитическая ячейка гранецентрированная ячейка базоцентрированная ячейка … Энциклопедический словарь по металлургии

ЯЧЕЙКА ГРАНЕЦЕНТРИРОВАННАЯ КУБИЧЕСКАЯ - один из 14 типов решеток Браве. Характеризуется расположением узлов по вершинам и в центрах всех граней куба. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

кубическая сингония - кристаллографическая сингония, для которой характерно соотношение между углами и рёбрами элементарной ячейки кристалла: а = b = с, α = β = γ = 90º. Подразделяется на 5 классов (точечных групп симметрии). * * * КУБИЧЕСКАЯ СИНГОНИЯ КУБИЧЕСКАЯ… … Энциклопедический словарь

кубическая решетка (К6) - кристаллическая решетка, элементарная ячейка которой относится к кубической сингонии; Смотри также: Решетка триклинная решетка тетрагональная решетка пространственная решетка … Энциклопедический словарь по металлургии

Кубическая сингония

Кубическая гранецентрированная решётка - В кристаллографии кубическая сингония одна из семи сингоний. Элементарная ячейка кристалла кубической сингонии определяется тремя векторами равной длины, перпендикулярными друг другу. В кубической сингонии существует три вида решёток Бравэ:… … Википедия

Кубическая решетка - В кристаллографии кубическая сингония одна из семи сингоний. Элементарная ячейка кристалла кубической сингонии определяется тремя векторами равной длины, перпендикулярными друг другу. В кубической сингонии существует три вида решёток Бравэ:… … Википедия

Кубическая решётка - В кристаллографии кубическая сингония одна из семи сингоний. Элементарная ячейка кристалла кубической сингонии определяется тремя векторами равной длины, перпендикулярными друг другу. В кубической сингонии существует три вида решёток Бравэ:… … Википедия

электролитическая ячейка - сосуд с электролитом, снабженный электродами, в котором реализуются электрохимическии реакции; основной конструкционный элемент промышленных электролизеров. Конструкции электролитической ячейки чрезвычайно разнообразны. В… … Энциклопедический словарь по металлургии

гранецентрированная ячейка - элементарная ячейка кристалла в виде параллелепипеда, в центре каждой грани которого располается дополнительный атом, однотипный атомам в его вершинах; Смотри также: Ячейка электролитическая ячейка … Энциклопедический словарь по металлургии

Одним из самых распространенных материалов, с которым всегда предпочитали работать люди, был металл. В каждую эпоху предпочтение отдавалось разным видам этих удивительных веществ. Так, IV-III тысячелетия до нашей эры считаются веком хальколита, или медным. Позже его сменяет бронзовый, а затем в силу вступает тот, что и по сей день является актуальным - железный.

Сегодня вообще сложно представить, что когда-то можно было обходиться без металлических изделий, ведь практически все, начиная от предметов быта, медицинских инструментов и заканчивая тяжелой и легкой техникой, состоит из этого материала или включает в свой состав отдельные части из него. Почему же металлы сумели завоевать такую популярность? В чем проявляются особенности и как это заложено в их строении, попробуем разобраться далее.

Общее понятие о металлах

"Химия. 9 класс" - это учебник, по которому проходят обучение школьники. Именно в нем подробно изучаются металлы. Рассмотрению их физических и химических свойств отведена большая глава, ведь разнообразие их чрезвычайно велико.

Именно с этого возраста рекомендуют давать детям представление о данных атомах и их свойствах, ведь подростки уже вполне могут оценить значение подобных знаний. Они прекрасно видят, что окружающее их разнообразие предметов, машин и прочих вещей имеет в своей основе как раз металлическую природу.

Что же такое металл? С точки зрения химии, к данным атомам принято относить те, что имеют:

  • малое на внешнем уровне;
  • проявляют сильные восстановительные свойства;
  • имеют большой атомный радиус;
  • как простые вещества обладают рядом специфических физических свойств.

Основу знаний об этих веществах можно получить, если рассмотреть атомно-кристаллическое строение металлов. Именно оно объясняет все особенности и свойства данных соединений.

В периодической системе для металлов отводится большая часть всей таблицы, ведь они образуют все побочные подгруппы и главные с первой по третью группу. Поэтому их численное превосходство очевидно. Самыми распространенными являются:

  • кальций;
  • натрий;
  • титан;
  • железо;
  • магний;
  • алюминий;
  • калий.

Все металлы имеют ряд свойств, которые позволяют объединять их в одну большую группу веществ. В свою очередь, эти свойства объясняет именно кристаллическое строение металлов.

Свойства металлов

К специфическим свойствам рассматриваемых веществ относят следующие.

  1. Металлический блеск. Все представители простых веществ им обладают, причем большинство одинаковым Лишь некоторые (золото, медь, сплавы) отличаются.
  2. Ковкость и пластичность - способность деформироваться и восстанавливаться достаточно легко. У разных представителей выражена в неодинаковой мере.
  3. Электропроводность и теплопроводность - одно из основных свойств, которое определяет области применения металла и его сплавов.

Кристаллическое строение металлов и сплавов объясняет причину каждого из обозначенных свойств и говорит о выраженности их у каждого конкретного представителя. Если знать особенности такого строения, то можно влиять на свойства образца и подстраивать его под нужные параметры, что и делают люди уже многие десятилетия.

Атомно-кристаллическое строение металлов

В чем же заключается такое строение, чем характеризуется? Само название говорит о том, что все металлы представляют собой кристаллы в твердом состоянии, то есть при обычных условиях (кроме ртути, которая является жидкостью). А что такое кристалл?

Это условное графическое изображение, построенное путем пересечения воображаемых линий через атомы, которые выстраивают тело. Другими словами, каждый металл состоит из атомов. Они располагаются в нем не хаотично, а очень правильно и последовательно. Так вот, если мысленно соединить все эти частицы в одну структуру, то получится красивое изображение в виде правильного геометрического тела какой-либо формы.

Это и принято называть кристаллической решеткой металла. Она очень сложная и пространственно объемная, поэтому для упрощения показывают не всю ее, а лишь часть, элементарную ячейку. Совокупность таких ячеек, собранная вместе и отраженная в и образует кристаллические решетки. Химия, физика и металловедение - это науки, которые занимаются изучением особенностей строения таких структур.

Сама - это набор атомов, которые располагаются на определенном расстоянии друг от друга и координируют вокруг себя строго фиксированное число других частиц. Она характеризуется плотностью упаковки, расстоянием между составными структурами, координационным числом. В целом все эти параметры являются характеристикой и всего кристалла, а значит, отражают и проявляемые металлом свойства.

Существует несколько разновидностей Объединяет их все одна особенность - в узлах находятся атомы, а внутри располагается облако электронного газа, которое формируется путем свободного передвижения электронов внутри кристалла.

Типы кристаллических решеток

Четырнадцать вариантов строения решетки принято объединять в три основных типа. Они следующие:

  1. Объемно-центрированная кубическая.
  2. Гексагональная плотноупакованная.
  3. Гранецентрированная кубическая.

Кристаллическое строение металлов было изучено только благодаря когда стало возможным получать большие увеличения изображений. А классификацию типов решеток впервые привел французский ученый Браве, по фамилии которого их иногда называют.

Объемно-центрированная решетка

Строение кристаллической решетки металлов данного типа представляет собой следующую структуру. Это куб, в узлах которого находится восемь атомов. Еще один располагается в центре свободного внутреннего пространства ячейки, что и объясняет название "объемно-центрированная".

Это один из вариантов наиболее простого строения элементарной ячейки, а значит, и всей решетки в целом. Такой тип имеют следующие металлы:

  • молибден;
  • ванадий;
  • хром;
  • марганец;
  • альфа-железо;
  • бетта-железо и другие.

Основные свойства таких представителей - высокая степень ковкости и пластичности, твердость и прочность.

Гранецентрированная решетка

Кристаллическое строение металлов, имеющих гранецентрированную кубическую решетку, представляет собой следующую структуру. Это куб, который включает в свой состав четырнадцать атомов. Восемь из них формируют узлы решетки, а еще шесть расположены по одному на каждой грани.

Подобную структуру имеют:

  • алюминий;
  • никель;
  • свинец;
  • гамма-железо;
  • медь.

Основные отличительные свойства - блеск разного цвета, легкость, прочность, ковкость, повышенная устойчивость к коррозии.

Гексагональная решетка

Кристаллическое строение металлов, обладающих решетки, следующее. В основе элементарной ячейки лежит шестигранная призма. В ее узлах располагается 12 атомов, еще два по основаниям и три атома свободно лежат внутри пространства в центре структуры. Всего семнадцать атомов.

Подобную сложную конфигурацию имеют такие металлы, как:

  • альфа-титан;
  • магний;
  • альфа-кобальт;
  • цинк.

Основные свойства - высокая степень прочности, сильный серебристый блеск.

Дефекты кристаллического строения металлов

Однако все рассмотренные типы ячеек могут иметь и естественные недостатки, или так называемые дефекты. Это может быть связано с разными причинами: посторонними атомами и примесями в металлах, внешними воздействиями и прочим.

Поэтому существует классификация, отражающая дефекты, которые могут иметь кристаллические решетки. Химия как наука изучает каждый из них с целью выявления причины и способа устранения, чтобы свойства материала не были изменены. Итак, дефекты следующие.

  1. Точечные. Они бывают трех основных видов: вакансии, примеси или дислоцированные атомы. Приводят к ухудшению магнитных свойств металла, электро- и теплопроводности его.
  2. Линейные, или дислокационные. Выделяют краевые и винтовые. Ухудшают прочность и качество материала.
  3. Поверхностные дефекты. Влияют на внешний вид и структуру металлов.

В настоящее время разработаны методики устранения дефектов и получения чистых кристаллов. Однако совсем искоренить их не удается, идеальной кристаллической решетки не существует.

Значение знаний о кристаллическом строении металлов

Из вышеизложенного материала очевидно, что знания о тонкой структуре и строении позволяют спрогнозировать свойства материала и повлиять на них. И это позволяет делать наука химия. 9 класс общеобразовательной школы делает в процессе обучения упор на то, чтобы сформировать у учащихся четкое понятие о важном значении основополагающей логической цепочки: состав - строение - свойства - применение.

Сведения о кристаллическом строении металлов очень четко иллюстрирует и позволяет учителю наглядно объяснить и показать детям, насколько важно знать тонкую структуру, чтобы правильно и грамотно использовать все свойства.

Большинство твердых веществ имеют кристаллическую структуру , в которой частицы, из которых она «построена» находятся в определенном порядке, создавая тем самым кристаллическую решетку . Она строится из повторяющихся одинаковых структурных единиц - элементарных ячеек , которая связывается с соседними ячейками, образуя дополнительные узлы. В результате существует 14 различных кристаллических решеток.

Типы кристаллических решеток.

В зависимости от частиц, которые стоят в узлах решетки, различают:

  • металлическую кристаллическую решетку;
  • ионную кристаллическую решетку;
  • молекулярную кристаллическую решетку;
  • макромолекулярную (атомную) кристаллическую решетку.

Металлическая связь в кристаллических решетках.

Ионные кристаллы обладают повышенной хрупкостью, т.к. сдвиг в решетке кристалла (даже незначительный) приводит к тому, что одноименно заряженные ионы начинают отталкиваться друг от друга, и связи рвутся, образуются трещины и расколы.

Молекулярная связь кристаллических решеток.

Основная особенность межмолекулярной связи заключается в ее «слабости» (ван-дер-ваальсовые, водородные).

Это структура льда. Каждая молекула воды связана водородными связями с 4-мя окружающими ее молекулами, в результате структура имеет тетраэдрический характер.

Водородная связь объясняет высокую температуру кипения, плавления и малую плотность;

Макромолекулярная связь кристаллических решеток.

В узлах кристаллической решетки находятся атомы. Эти кристаллы разделяются на 3 вида:

  • каркасные;
  • цепочечные;
  • слоистые структуры.

Каркасной структурой обладает алмаз - одно их самых твердых веществ в природе. Атом углерода образует 4 одинаковые ковалентные связи, что говорит о форме правильного тетраэдра (sp 3 - гибридизация). Каждый атом имеет неподеленную пару электронов, которые также могут связываться с соседними атомами. В результате чего образуется трехмерная решетка, в узлах которой только атомы углерода.

Энергии для разрушения такой структуры требуется очень много, температура плавления таких соединений высока (у алмаза она составляет 3500°С).

Слоистые структуры говорят о наличии ковалентных связях внутри каждого слоя и слабых ван-дер-ваальсовых - между слоями.

Рассмотрим пример: графит. Каждый атом углерода находится в sp 2 - гибридизации. 4-ый неспаренный электрон образует ван-дер-ваальсовую связь между слоями. Поэтому 4ый слой очень подвижен:

Связи слабые, поэтому их легко разорвать, что можно наблюдать у карандаша - «пишущее свойство» - 4ый слой остается на бумаге.

Графит - отличный проводник электрического тока (электроны способны перемещаться вдоль плоскости слоя).

Цепочечными структурами обладают оксиды (например, SO 3 ), который кристаллизуется в виде блестящих иголок, полимеры, некоторые аморфные вещества, силикаты (асбест).


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении