teen-art.ru – Краткие содержания произведений русских и зарубежных

Краткие содержания произведений русских и зарубежных

Международный студенческий научный вестник. Применение метода анализа размерностей при решении гидравлических задач Анализ размерности основные принципы и методы

Сущность метода анализа целесообразности затрат основывается на том, что в процессе предпринимательской деятельности затраты по каждому конкретному направлению, а также по отдельным элементам, не имеют одинаковую степень риска. Другими словами, степень риска двух разных направлений деятельности одной и той же фирмы неодинакова; и степень риска по отдельным элементам затрат внутри одного и того же направления деятельности также неодинакова. Так, например, гипотетически занятие игорным бизнесом более рискованное по сравнению с производством хлеба и затраты, которые несет диверсифицированная фирма на развитие этих двух направлений своей деятельности, будут также отличаться по степени риска. Даже в том случае, если предположить, что размер затрат по статье «аренда помещений» будет одинаковым по обоим направлениям, то все равно степень риска будет выше в игорном бизнесе. Такая же ситуация сохраняется и с затратами внутри одного и того же направления. Степень риска по затратам, связанным с покупкой сырья (которое может быть доставлено не точно в указанный срок, его качество может не полностью соответствовать технологическим нормам или его потребительские свойства могут быть частично утеряны при хранении на самом предприятии и т. д.), будет выше, чем по затратам на заработную плату.

Таким образом, определение степени риска путем анализа целесообразности затрат ориентировано на идентификацию потенциальных зон риска. Такой подход целесообразен еще и с тех позиций, что дает возможность выявить «узкие места» в деятельности предприятия с точки зрения рискованности, а после разработать пути их ликвидации.

Перерасход затрат может произойти под влиянием всех видов рисков, о которых говорилось ранее во время их классификации.

Обобщив накопленный мировой и отечественный опыт анализа степени риска при помощи использования метода анализа целесообразности затрат, можно сделать вывод о необходимости использовать при таком подходе градацию затрат на области риска.

Для анализа целесообразности затрат состояние по каждому из элементов затрат должно быть разделено на области риска (табл. 4.1), которые представляют собой зону общих потерь, в границах которых конкретные потери не превышают предельного значения установленного уровня риска:

  • 1) область абсолютной устойчивости;
  • 2) область нормальной устойчивости;
  • 3) область неустойчивого состояния:
  • 4) область критического состояния;
  • 5) область кризисного состояния.

В области абсолютной устойчивости степень риска по рассматриваемому элементу затрат соответствует нулевому риску. Данная область характеризуется отсутствием каких-либо потерь при совершении предпринимательской деятельности с гарантированным получением плановой прибыли, размер которой теоретически не ограничен. Элемент затрат, который находится в области нормальной устойчивости, характеризуется минимальной степенью риска. Для данной области максимальные потери, которые может нести субъект предпринимательской деятельности, не должны превышать границы плановой чистой прибыли (т.е. той ее части, которая остается у субъекта хозяйствования после налогообложения и всех остальных выплат, которые производятся на данном предприятии из прибыли, например, выплата дивидендов). Таким образом, минимальная степень риска обеспечивает фирме «покрытие» всех ее издержек и получение той части прибыли, которая позволяет покрыть все налоги.

Как правило, в условиях рыночной экономики, как было показано ранее, направление, которое имеет минимальную степень риска, связано с тем, что государство является его основным контрагентом. Это может проходить в самых различных формах, из которых основными являются такие, как: осуществление операций с ценными бумагами правительства или муниципальных органов, участие в выполнении работ, финансируемых за счет государственного или муниципальных бюджетов и т.д.

Область неустойчивого состояния характеризуется повышенным риском, при этом уровень потерь не превышает размеры расчетной прибыли (т. е. той части прибыли, которая остается у предприятия после всех выплат в бюджет, уплаты процентов за кредит, штрафов и неустоек). Таким образом, при такой степени риска субъект предпринимательской деятельности рискует тем, что он в худшем случае получит прибыль, величина которой будет меньше ее расчетного уровня, но при этом будет возможность произвести покрытие всех своих издержек.

В границах области критического состояния, которой соответствует критическая степень риска, возможны потери в границах валовой прибыли (т. е. общей сумме прибыли, которая получена предприятием до произведения всех вычетов и отчислений). Такой риск является нежелательным, потому что при этом фирма рискует потерять не просто прибыль, а и не покрыть полностью свои издержки.

Недопустимый риск, который соответствует области кризисного состояния, означает принятие субъектом предпринимательской деятельности такой степени риска, которая предполагает наличие возможности не покрытия всех издержек фирмы, связанных с данным направлением ее деятельности.

Таблица 4.1 - Области деятельности предприятия.

После того, как рассчитан коэффициент b на основании данных прошлых периодов, каждая статья затрат. Анализируется по отдельности на предмет ее идентификации по областям риска и максимальным потерям. При этом степень риска всего направления предпринимательской деятельности будет соответствовать максимальному значению риска по элементам затрат. Преимущество данного метода состоит в том, что зная статью затрат, у которой риск максимальный, возможно найти пути его снижения (например, в том случае, если максимальная точка риска приходится на затраты, связанные с арендой помещения, то можно отказаться от аренды и купить его и т. п.)

Основной недостаток такого подхода к определению степени риска, так же как и при статистическом методе, состоит в том, что предприятие не анализирует источники происхождения риска, а принимает риск как целостную величину, таким образом, игнорируя его мультисоставляющие.

Анализ размерностей, теория подобия, моделирование, а также метод аналогии различных явлений позволяют, наряду с правильной постановкой и проведением экспериментов, ускорить вычислительные и другие работы. Однако в теоретических основах бурения нефтяных и газовых скважин этот метод широко не применяется. В то же время в теоретических основах разработки нефтяных и газовых залежей эти средства сравнительно широко применяются.

Для правильной постановки экспериментов, обработки получае­мых результатов и обобщений нужно проводить количественно-теоретический анализ. В этом случае уменьшается количество опытов, результаты которых выражаются в безразмерных параметрах. В гидродинамике, в частности, эти параметры определяются, как соотношение сил.

Обычно различают величины размерные и безразмерные. Примерами размерных величин являются скорость, давление, вязкость, предельное напряжение сдвига, длина, время и др.

Отношения длины к ее диаметру, сил вязкости к предельному напряжению сдвига и т. д. являются безразмерными величинами. Анализ теории размерностей позволяет в уравнениях путем пере­хода от размерных переменных к безразмерным уменьшить число переменных. Допустим, что дано следующее квадратное уравнение:

ax 2 + bx+c = 0,

где безразмерный х зависит от коэффициентов а, bи с, имеющих одинаковые размерности.

с, то уравнение примет вид

Как видно из уравнения, переменная х зависит от и , т. е.

. Следовательно, запись уравнения в безразмерном виде

позволяет уменьшить число переменных с трех до двух. Если уравнение неизвестно или необходимо определить вид функциональной зависимости, то вместо изменения а и bизменим отношения и . Таким образом, не только уменьшается число переменных, но и при наименьших затратах времени и труда достигается возможность проведения эксперимента. Допустим, что для постановки эксперимента требуется изменение величин и . Если во время экспериментирования величину с легко изменить, то, изменив величину с, можно изменить величины и (при этом величины а и bостаются постоянными), и, наоборот, если трудно изменить величину с при экспериментировании, то, изменив величины и , можно изменить величины a и b. Если же

при проведении экспериментов сложно изменить величины b ис, то изменением одной из них можно достигнуть изменения отношения величин.

Физические основы связывают величины определенными зависимостями. Поэтому, если для некоторых величин будут выбраны размерности, то на основании соответствующих формул могут быть получены размерности других величин. Зависимость между физическими величинами позволяет выбрать такую основную систему размерностей, что для измерения в этой системе механических величин достаточен произвольный выбор трех размерностей.

Во многих случаях в технике единицы длины L, времени Т и силы F принимаются за основные единицы. Однако среди единиц измерения вязкость , скорость v и плотность также могут быть приняты за основные. Такие величины называются величинами с независимыми размерностями (см. ниже).

В настоящее время принята международная система единиц СИ, в которой размерность длины 1 м, массы - 1 кг и времени - 1 сек.

Если обозначить независимые размерности длины, времени и силы соответственно через L, Т и F, то широко применяемые в гидромеханике величины будут иметь следующие размерности:

скорость

Если для математического описания нельзя составить дифференциальное уравнение или другую математическую зависимость, то, применяя теорию размерностей, можно описать физическое явление без уравнения, описывающего процесс. Но для этого необходимо знать поясняющие данное явление начальное и граничные условия. Применение для этих целей -теоремы (теоремы Букингема) позволяет выявить основные безразмерные параметры, характеризующие рассматриваемое явление.

Предположим, что безразмерная величина а зависит от не зависящих друг от друга переменных величин а 1: ..., а п

а = а(а 1 , а 2 , a 3 , . . ., а т, а т+1 , . . . , а п).

Функциональная зависимость обычно записывается в виде ; при большом количестве зависимостей . Знаки функции должны приниматься различными. Проще зависимости изображаются так:

Допустим, что среди этих размерных величин число величин с независимыми размерностями равно т. В механике и технике их не может быть более трех. За независимые размерности прини­маются длина L, время Т, сила F или же их степенная комбинация, из которой могут быть получены L, Т и F, например:

В уравнение входят n+1 размерных величин. На основании л-теоремы связь между п + 1 размерными единицами может быть осуществлена п + 1 - m безразмерными параметрами, состоящими из п + 1 размерных величин.

Тогда безразмерные параметры можно записать

Здесь показатели т 1, т 2 , ..., m k ; p 1 р 2 ,.., p k ; g 1 g 2 ..., g k выбираются так, чтобы параметры получились в безразмерном виде.

Применение -теоремы поясним на конкретном примере. Предположим, что вместо величины дана , а вместо величин с независимыми размерностями даны . Тогда получим

Так как в этой формуле левая часть безразмерная, то и правая часть должна быть безразмерной, т. е.

Тогда, приравнивая показатели степени при L, Т и F, получаем:


Решения этой системы трех линейных уравнений будут следующие:

Следовательно, безразмерный параметр можно представить ввиде

Это выражение представляет собой отношение давления и инерции и называется параметром Эйлера.

При использовании теории размерности используются физические и математические соображения.

Рассмотрим стационарное движение несжимаемой вязко-пластической жидкости в цилиндрической трубе. Перепад давления на концах трубопровода зависит от длины и диаметра трубы, структурной вязкости, предельного напряжения сдвига, плотности жидкости, а также от ускорения силы тяжести и скорости движения. При движении сжимаемой жидкости в уравнение должен войти не перепад давления, а абсолютные значения давлений, действующих на концах трубы. Для рассматриваемого случая физическое уравнение имеет вид

, или

Так как число независимых равно трем, то, используя -теорему, можем вывести пять безразмерных параметров. В данном случае в качестве величин с независимыми размерностями могут быть выбраны следующие: и т. д.

Выше было отмечено, что в каждом варианте величины с независимыми размерностями нужно выбирать так, чтобы их степенные комбинации дали бы возможность получить размерности длины L, силы F, времени Т. Теперь для принятых вариантов проверим это условие.

Так как в первом варианте давление, диаметр и скорость приняты за основные, то, комбинируя их, будем стремиться получить размерности L, F и Т.

Найдем размерность длины

Следовательно,

Таким образом, для получения размерности длины нужно при­нять следующую комбинацию р, d и v:

.

Найдем размерность силы:

,

Следовательно,

;

т. е. для получения размерности силы нужно воспользоваться сле­дующей комбинацией :

.

Найдем размерность времени

,

Следовательно,

.

Размерность времени получим из приводимой ниже комбинации р, d и v:

В каждом варианте комбинации этих величин выбираются так, чтобы в результате можно было бы получить безразмерный пара­метр. Теперь для каждого из двух вариантов выведем безразмерные параметры.

Вариант 1. Комбинации трех величин, принятых при выводе безразмерных параметров , должны быть выбраны так, чтобы можно было получить размерности остальных величин, а затем в результате деления привести полученную величину к безразмерному виду.

Для величины можем записать:




Таким образом, получим четвертый безразмерный параметр в виде

Здесь для стационарного движения вязко-пластических жидко­стей получены параметры Eu, Fr, La" и La".

Аналогично, если вывести безразмерные параметры для , то получим

Ввиду того, что из восьми величин, входящих в уравнение, три приняты за независимые переменные, число безразмерных параметров уменьшится на число независимых переменных, т. е. получим п - т = 8-3 = 5 безразмерных параметров.

Вариант 2. Принимая размерные величины за основные и выводя из -теоремы безразмерные параметры, получаем следующие выражения:

Сопоставим их с параметрами варианта I:


Ввиду того,что, что искомая величина входит входит в параметр Eu, то результаты опытов представлены в виде

Так как величина входит в параметрEu, остальные три параметра выбираем так, чтобы там искомая величина не участвовала.

Уравнение можно выразить и с помощью параметра Лагранжа, в котором участвует , т. е.

Это уравнение применимо для стационарного движения; если же движение нестационарное, необходимо принять во внимание и параметр Струхаля.

При горизонтальном положении трубы силы тяжести не оказывают влияния на движение, поэтому g во внимание не принимается.

Так как при изотермическом движении физические свойства;ьидкости по длине трубы не меняются, расход и сечение остаются постоянными, то потери давления, приходящиеся на единицу длины (из уравнения неразрывности), бывают разными. В этом случае характерным является .Например, если будем знать потери давления, соответствующие 100 м длины, то можно определить потери давления на 200, 300 м и т. д. Здесь начальные и концевые участки во внимание не принимаются. Тогда перепад давления па единицу длины может быть выражен как

.

Так как определяется , то параметр отпадает и параметр Эйлера записывается в виде

Для вязких жидкостей аналогичное уравнение, выведенное независимо друг от друга Дарси и Вейсбахом, называется уравнением Дарси - Вейсбаха.

Таким образом,

где - коэффициент гидравлических сопротивлений.

Рассмотрим уравнение длинной двухпроводной линии . Двухпроводная линия представлена системой с равномерно распределенными утечками, индуктивностями, сопротивлениями и емкостями. Разность потенциалов U и сил тока i в сечениях х и определяется на основании закона Кирхгофа, записанного для процесса, протекающего на отрезке в промежуток времени . Разность U(x, t) - U(х + Ах, t) определяет разность потенциалов на индук-тивиостях и омических сопротивлениях

где L и R - соответственно индуктивность и омическое сопротивление на единицу длины.

Первый член правой части, характеризующий изменение э. д. с. на индуктивностях, определяется изменением силы тока во времени. Второй член - разность потенциалов, которая рассчитывается по закону Ома.

Второе уравнение - баланс силы тока, определяемый конденсатором и утечкой, т. е.

" где С - емкость, приходящаяся на единицу длины; G- - проводимость на единицу длины.

Первый член правой части - сила тока, проходящего через конденсатор и характеризуемого изменением в течение времени разностью потенциалов. Второй член - сила тока - утечка, определяемая по закону Ома.

Приведенные два уравнения - конечно-разностные уравнения длинной двухпроводной линии. Переходя к пределу при , можно получить:

Эта система уравнения при G = 0 вполне аналогична дифференциальным уравнениям движения капельной жидкости в трубопроводе при .

Рассмотрим неустановившееся движение реальной среды в гори-зонтальной круглой цилиндрической трубе. В этом случае одно гремя релаксации характеризует пестационарность вдоль оси, дру-юе - вдоль сечения. Предполагается, что второе пренебрежимо -тало по сравнению с первым. Поэтому исследуется нестационар-юсть, развивающаяся вдоль оси трубы, т. е. рассматривается ква-зиодномерное движение, характеризуемое параметрами, осреднен-м.ши по сечению. Предполагается, что жидкость малосжимаемая, т. е. изменение ее скорости вдоль оси мало. В сечении 1 -1 (см. Рис. 9) среднее давление обозначается через р (х, t), а в сечении 2-2 - через .

Касательное напряжение обозначается через . Тогда сила тре-шя, действующая на боковую поверхность элементарного круглого цилиндра, будет , где S 1 - смоченный периметр.

В уравнении движения «местная скорость» приближенно заменяется средней по сечению скоростью v, но это не влияет на конечный результат.

Сумма сил сопротивления и давления равна , где F - площадь поперечного сечения.

Переходя к пределу, получаем

Абсолютную величину силы инерции выразим через , где



Масса среды в отсеке 1-1, 2-2 трубы. Тогда в пределе. На основании принципа Д"Аламбера

Ввиду того, что скорость мало изменяется по длине трубы, вторим членом этого равенства но сравнению с первым можно пренебречь, т.е.

Сформулируем более полно условия, при которых можно пренебречь вторым членом но сравнению с первым. Первый член имеет порядок , второй (L - характерный размер, в данном случае длина трубопровода, Т - характерное время, в качестве которого может быть принято время релаксации). Вторым членом можно пренебречь по сравнению с первым при условии

Параметр безразмерный. Оценим величину этого параметра для магистрального трубопровода: 1 м/сек; 100 км.

Если принять, что время релаксации порядка нескольких часов соответствует времени практического достижения стационарного

где R - гидравлический радиус.

режима, то получим . Тогда

где R гидраврический радиус

Уравнение неразрывности запишем в виде

Для изотермического движения принимается уравнение состояния

Вводя вместо среднемассовую скорость w, можно записать

Из анализа размерностей нетрудно установить, что при ламинарном режиме пропорционально средней скорости в первой степени,

а при турбулентном режиме - квадрату скорости.

Необходимо еще раз отметить, что здесь мы воспользовались принципом квазистационарности, т. е. силы сопротивления определяли по формулам для стационарного режима. Принимая , находим

где 2а - коэффициент сопротивления.

Из этих двух уравнений можно получить одно

Рассмотрим, как, используя соображения размерности, можно упростить уравнение. Переищем к безразмерным переменным:

где L, t 0 и w 0 - характерные величины.

В качестве L принималась длина трубопровода. Следовательно, в

безразмерных переменных

Из условия определяется . Окончательно

Если коэффициент при члене достаточно большой, то можно пренебречь силой инерции по сравнению с силой сопротивления .

Таким образом, перепад давления расходуется только лишь на преодоление сил сопротивления. В этом случае уравнение принимает вид

Естественно, что принятое предположение оправдывается для трубопроводов очень большой длины и при движении в них жидкости очень большой вязкости. При определении пускового давления в трубопроводах и в сква­жине можно пренебречь силой инерции



Уровень, который может быть принят как достаточно большой, определяется на основании сопоставимых расчетов. Соображения подобия позволяют, не решая уравнения, получить некоторую информацию. Например, второй закон Ньютона для частного случая потенциального силового поля можно записать в виде

приняв , можно получить

Следовательно, если уменьшить массу точки в 25 раз, то на прохождение орбиты потребуется времени в пять раз меньше.

Среди различных явлений, встречаемых в природе, выявлено много математических аналогий. За последние десятилетия в практике применяются лабораторные исследования и проекты, основанные на электрических, магнитных, электродинамических, электромагнитных, тепловых, звуковых, оптико-механических, магнитно-оптических и других аналогиях и на теории моделирования. Электромоделирование различных физических явлений широко используется в теории фильтрации, гидравлике, гидродинамике, строительстве, теплотехнике, теории упругости, механике грунтов, теории механизмов, акустике, теории автоматического регулирования, а также в других областях науки и техники.

В современном гидротехническом строительстве при строительстве больших и сложных гидротехнических объектов требуется проводить сложные исследования по фильтрации. Теоретическое исследование этих вопросов очень сложно, а иногда и неразрешимо. Эти сложные вопросы очень легко разрешаются с помощью метода ЭГДА (электрогидродинамическая аналогия), в том числе разрешаются многие задачи, относящиеся к фильтрации нефти, газа и гази­рованных жидкостей.

Применение метода ЭГДА при исследовании фильтрации почвенных вод под гидротехнические сооружения впервые в 1918 г. было предложено и теоретически обосновано академиком Н. Н. Павловским. Метод ЭГДА также широко используется в различных областях научных исследований.

Применение центробежного моделирования дает хорошие результаты при решении следующих задач, относящихся к статике и динамике пород: определение прочности земляных строительных откосов; определение прочности валов и других строительных фундаментов; распределение напряжений в породах и на контакте строительных поверхностей с породой; оседание зданий; фильтрация воды в породе и влияние фильтрации па породы; определение в связанных породах сил трения и сцепления и т. д.

Ниже покажем два простых примера, относящихся к аналогии.

Аналогия между электрическими и механическими явлениями

В замкнутую цепь (рис. 25) включены конденсатор с емкостью С, омическое сопротивление R, катушка самоиндукции L и ключ К.

Через цепь проходит электрический ток I. Для последовательной цепи, как известно из закона Кирхгофа, разность потенциалов будет состоять из суммы разности напряжений на

омическом сопротивлении, конденсаторе и катушке. Эти три составляющие рассчитываются следующим образом:

а) в результате самоиндукции разность напряжений равняется произведению коэффициента самоиндукции на скорость изменения тока, т. е. ;

б) разность напряжений, связанных с омическим сопротивлением, равна произведению RI (закон Ома);

в) разность напряжений на конденсаторе (по определению)

Таким образом, дифференциальное уравнение, описывающее явление, запишем в виде

При решении этого дифференциального уравнения второго порядка для нахождения двух постоянных должны быть заданы два условия. Например, в начальный момент времени t = t 0 задаются

утопия и .

Остановимся на условиях, необходимых для решения уравнений. Если явление описывается обыкновенным дифференциальным уравнением n-го порядка, т. е. в уравнении искомая функция зависит только от одного аргумента (п - самый высокий порядок производной, входящей в уравнение, - целое число, которое может равняться единице или более), то в результате его решения должно получиться п произвольных постоянных. Для нахождения их должны быть заданы п условий. Эти условия, зависящие от характера изучаемого явления, могут быть заданы различными способами.

1. При определенном значении аргумента задается функция и ее п - 1 производные. Например, если в заданном уравнении третьего порядка искомая функция зависит от времени, то для определенного

значения времени должны быть даны функции и ее первая и вторая производные.

Такая задача называется задачей с начальными условиями, или задачей Коши.

2. При определенных значениях аргументов задаются функции и их производные. Например, если иметь дифференциальное уравнение пятого порядка, то из двух значений аргументов при одном из них даются искомая функция и ее первая и вторая производные, а при другом значении - функция и ее третья производная. Здесь в зависимости от постановки задачи возможны также различные другие варианты.

Для приведенной электрической цепи граничные условия могут быть заданы так:

Рассмотрим механическую цепь, имеющую одну степень свободы. Напишем условие равновесия сил, действующих на пружину (рис. 26).

На пружину действуют активные силы тяжести и упругости и пассивная сила сопротивления.

Воспользовавшись принципом Д"Аламбера, условие равновесия запишем в виде

где т - масса; h - затухание колебания; к - коэффициент жесткости; х - перемещение.

В приводимом уравнении (А) первый член по абсолютному значению представляет силу инерции, второй - силу трения, а третий - силу упругости.

Уравнение механического колебания имеет тот же вид, что и уравнение, описывающее электрическое колебание. Следовательно, в указанных уравнениях аналогичными являются параметры: х - I,

т - L: h - R .

Перейдем к безразмерным величинам следующим образом:

где t 0 - начальное значение аргумента; х 0 и I 0 - начальные значения функции. Таким образом,

Если все члены уравнения разделить на , to получим следующее уравнение с безразмерными коэффициентами:


Аналогично уравнение механических колебаний можно записать в безразмерном виде

Напишем начальные условия для уравнения колебаний в электрической цепи в безразмерном виде:

Начальные условия для уравнения механического колебание будут:

Для равенства вторых начальных условий должно быть удовлетворено следующее условие:

Теперь, пользуясь аналогией уравнений механического и элекричсского колебаний, перейдем от одного уравнения к другому.

Предположим, что для механического контура т, к С и I" 0 , из этих трех уравнений можно найти I 0 , L и R. Выбор этих параметров зависит от места и условий опыта.

После нахождения этих параметров для установления зависимости I=I(t) собирается соответствующая электрическая цепь.

Гидравлическая аналогия при решении задач теплопередачи

Аналитическое решение задач теплопередачи со сложными краевыми условиями и изменяющимися термическими коэффициентами (которые часто встречаются в практике) связано с большими труд­ностями. Применение же метода элементарных балансов связано с трудоемкими вычислительными операциями. В связи с этим созданы счетно-решающие приборы, основанные на аналогиях, облегчающих вычислительные операции. При использовании метода аналогии стремятся воспроизвести исследуемое данное явление на аналогичном явлении, которое описывается теми же математическими зависимостями, но более просто управляемом. При этом значительно облегчаются вычислительные работы.

Известны электрические модели нестационарных процессов теплопроводности (электроинтегратор Л. И. Гутенмахера); нашел применение и метод гидравлической аналогии, предложенный В. С. Лукьяновым.

Гидравлический интегратор В. С. Лукьянова основан на аналогии математических соотношений, описывающих распространение температуры в твердом теле и распределение напоров в воде, движущейся через гидравлические сопротивления при ламинарном режиме.

Основной принципиальной особенностью, определяющей устройство гидроинтегратора, является замена в гидравлическом поле равномерно распределенных параметров сосредоточенными, т. е. переход от поля к цепи с сосредоточенными параметрами. В связи с этим процесс воспроизведения непрорывного температурного поля с сосредоточенными параметрами представляет собой переход от решения дифференциальных уравнений к решению уравнения в конечных разностях.

Этот прибор состоит из основных элементов аналогии гидравлической цепи с сосредоточенными элементами сопротивлений и емкостей, а также специальных элементов, воспроизводящих выделение скрытой теплоты при изменении агрегатного состояния; устройства для задания граничных условий; приспособлений для измерения напора в узлах гидравлической цепи; устройства, обеспечивающего питание прибора водой.

Рассмотрим конкретный пример определения распределения температуры в многослойной стенке при одномерном тепловом потоке. Стенка задается размерами отдельных слоев и теплофи-зическими характеристиками материалов, т. е. объемными теплоемкостями ( , где с - удельная теплопроводность тела; - объемный вес тела), и коэффициентами теплопроводности (рис. 27).

Дано определенное начальное распределение температуры и произвольно выбранные воздействия температур наружных сред II тепловых потоков па поверхности стенки. Вначале составляется расчетная схема. Разбивают стенку на конечное число слоев. При этом допускается, что теплоемкость для каждого слоя сосредоточена в середине его и ограждается термическими сопротивлениями, равными половине толщины слоя.

Таким образом, расчетная схема представляет собой цепочку юплоемкостей с, разделенных между собой термическими сопротивлениями .

Теплоемкости крайних слоев отделены от наружной среды допол-пительным термическим сопротивлением теплоотдачи с поверхности. Процесс теплообмена элементарных слоев между собой и окружающей средой определяется следующей системой уравнений:

; (1-98)

Коэффициент гидравлических сопротивлений; h - уровень жидкости в сосуде; - разница уровней жидкости в сосудах.

Расход жидкости q пропорционален разности уровней в сосудах (аналог закона теплопроводности), а приращение содержания воды в сосуде за время равно произведению площади сечения сосуда на приращение высоты уровня.

Уравнения (1.98) и (1.95) аналогичны уравнениям (1.100) и (1.101). Предположим, что цепь сосудов составлена так, что в ней величины численно равны. Начальное распределение уровней h в соответствующем масштабе изображает начальное распределение температуры в центре элементарных слоев, а изменение уровней в подвижных сосудах происходит так же, как изменение температуры окружающих сред. Тогда уровень в сосудах будет изменяться аналогично изменению температуры в элементарных слоях. Если и численно не равны и , а лишь пропорциональны им, то тепловой процесс также будет воспроизводиться на модели, по только в другом масштабе времени. Наличие такой возможности создает большие удобства, так как можно значительно ускорить иоспроизведение медленных и замедлить воспроизведение быстро протекающих процессов теплообмена. В этом случае перейти от гидравлической модели к исследуемому процессу можно посредством иыбора соответствующих масштабных соотношений.

Если все величины, входящие в уравнения (1.98) - (1.101), выразить в безразмерных величинах, то система (1.98) и (1.99) будет подобна систем

1

В статье рассмотрена теория метода размерностей и применение данного метода в физике. Уточнено определение метода размерностей. Перечислены возможности данного метода. С помощью теории размерности можно получить особенно ценные выводы при рассмотрении таких явлений, которые зависят от большого количества параметров, но при этом так, что некоторые из этих параметров в известных случаях становятся несущественными. В рассматриваемом методе искомая закономерность может быть представлена в виде произведения степенных функций физических величин, от которых зависит искомая характеристика. Метод теории размерности играет особенно большую роль при моделировании различных явлений. Таким образом, целью анализа размерностей является получение некоторых сведений о соотношениях, существующих между измеримыми величинами, связанными различными явлениями.

размерность

метод размерностей

физическая величина

1. Алексеевнина А.К. От физических понятий к культуре речи // Фундаментальные исследования. – 2014. – № 6-4. – С. 807-811.

2. Брук Ю.М., Стасенко А.Л. Как физики делают оценки – метод размерностей и порядки физических величин // Сб. «О современной физике – учителю», изд. «Знание», Москва, 1975. – С. 54–131.

3. Власов А.Д., Мурин Б.П. Единицы физических величин в науке и технике. – М.: Энергоатомиздат, 1990. – 27 с.

Ежедневно мы сталкиваемся с различными измерениями. Чтобы не опаздывать, мы устанавливаем будильник (фиксируем время), следим за культурой своего питания (взвешиваем продукты, считаем калории). Единицы измерения всем знакомы, например, скорость движения измеряется в м/c в системе СИ, а в другой - км/час. Единицы измерения придуманы людьми, исторически это связано с развитием социума, научно-технического процесса, торговли и т.д.

В науке закономерности, то есть уравнения связи одних физических величин с другими, необходимо анализировать не с помощью единиц, которые полностью зависят от человека, а с помощью каких-то других понятий, независимых от человека. Поскольку и сами природные закономерности от человека не зависят.

Уравнения связи физических величин анализируют не с помощью единиц измерения, а с помощью каких-то других понятий, однозначных для одной и той же величины. С этой целью и введено понятие «размерности». Размерность - это выражение (без числовых коэффициентов), зависимости величины от основных величин системы, в виде произведения степеней сомножителей, соответствующих основным величинам. Каждой размерности придуман свой символ обозначения, и порядок их расположения строго регламентировано. Например, объем любого тела обозначаться L3, скорость механического движения тела - LT-1 .

Тот факт, что физические соотношения имеют скалярный, векторный или тензорный характер, отражает свойство инвариантности физических законов относительно системы координат.

С другой стороны, для того, чтобы задать значения какой-либо физической величины, необходимо задать единицы ее измерения, и, вообще говоря, систему единиц измерения. Очевидно, что смысл физических соотношений не должен зависеть от выбора системы единиц измерений.

При этом нет необходимости для каждой физической величины задавать строго особую единицу измерения, т.к. физические определения и соотношения позволяют выражать размерности одних физических величин через другие.

Например, определение скорости позволяет выразить размерность скорости v = ds/dt через размерности перемещения ds и времени dt.

В любой системе единиц вводятся основные единицы измерения. Они вводятся из опыта с помощью эталонов. Например, в СИ основными считаются метр, секунда, килограмм, Ампер, Кельвин, моль, кандела.

Выражение произвольной единицы измерения через основные единицы измерения называется размерностью. Для каждой основной величины вводится обозначение: L - длина, М - масса, Т-время и т.д.

Любая произвольная размерность обозначается квадратными скобками от соответствующей величины. Например, [v] - размерность скорости, [Е] - размерность энергии и т.д.

Формула размерности. В теории размерности доказывается, что размерность любой величины представляет собой степенные одночлены вида [N] = LlTtMm... и называется формулой размерности. Иногда в формулах размерности используют не символы основных величин, а их единиц измерения [v] = мс-1, [Е] = кг м2с2 и т.д.

Метод размерностей - одно из самых интересных методов расчета. Суть его заключается в возможности восстанавливать различные соотношения между физическими величинами. Достоинства: быстрая оценка масштабов исследуемых явлений; получение качественных и функциональных зависимостей; восстановление забытых формул на экзаменах, ЕГЭ. А так же специальные задания с использованием метода размерностей, способствует развитию мышления и культуры речи .

В основе метода размерностей лежит составление перечня существенных физических величин, определяющих процесс в данной задаче. Это возможно сделать лишь при сознательном и глубоком понимании, а также при исследовательском, творческом подходе к разбору физической ситуации. Это означает, что использование метода размерностей способствует развития мышления учащихся на уроках физики. Большинство задач школьного курса физики относительно просты с точки зрения рассматриваемого метода, это значительно облегчает его использование в обучении.

Рассмотрим некоторые достоинства и приложения метода размерностей:

Быстрая оценка масштабов исследуемых явлений;

Получение качественных и функциональных зависимостей;

Восстановление забытых формул на экзаменах;

Выполнение некоторых заданий ЕГЭ;

Осуществление проверки правильности решения задач.

Метод размерностей является распространенным и относительно простым методом современной физической науки. Он позволяет с меньшими затратами сил и времени проверить:

1) правильность решения задачи;

2) установить функциональную зависимость между физическими величинами, характеризующими данный процесс;

3) оценить ожидаемый численный результат. Кроме того, учитель физики имеет возможность:

а) опросить за урок большее число учащихся;

б) выяснить знание формул и единиц измерения физических величин;

в) сэкономить время при объяснении нового материала. Использование метода размерностей на учебных занятиях будет стимулировать более углубленное изучение предмета, расширит кругозор учащихся, усилит меж предметную связь.

В физике имеется одна чрезвычайно полезная математическая процедура, называемая анализом размерностей.

Для правильной постановки и обработки экспериментов, результаты которых позволяли бы установить общие закономерности и могли бы быть приложенными к случаям, в которых эксперимент не проводился непосредственно, необходимо вникать в сущность изучаемого вопроса и давать общий качественный анализ.

Возможность такого предварительного качественно-теоретического анализа и выбора системы определяющих безразмерных величин и дает теория размерности, которая приносит много пользы и в теории, и в практике. Все результаты, добываемые с помощью этой теории, получаются всегда очень просто, элементарно и почти без всякого труда. Но применение этой теории к новым задачам требует опыта и понимания сущности явления.

Всякое уравнение в физике выражает соотношение, объективно существующее в природе, независимо от воли того, кто это уравнение пишет. И, конечно, обе части уравнения должны выражаться величинами, измеряемыми в одних и тех же единицах.

Анализ размерностей широко применяется в физике для анализа уравнений, которые бывают не так просты, как F = ma, и в отношении которых присутствует сомнение, верны ли они. Если бы степени хотя бы одной размерности не совпали, то это означало бы стопроцентную гарантию того, что уравнение неверно .

При решении задач, а соответственно и тестов большое значение имеет контроль по установлению размерностей величин входящих в качестве слагаемых в расчетные формулы. Вполне очевидно, что выражение типа «3м-2кг» не имеет смысла, поэтому если в результате решения появляются слагаемые, имеющие разную размерность, то это явный признак того, что была допущена ошибка (чаше всего она носит арифметический характер). Понимая это, необходимо периодически при решении теста или задачи прибегать к анализу размерности.

Польза от применения размерностей не ограничивается процедурой анализа размерностей. Также метод размерностей используется при систематизации физических величин.

Следует только помнить, что размерность при систематизации физических величин - это всё же понятие вспомогательное. Оно помогает решать проблему, но решить проблему не возможно только с помощью размерностей. Да и стремиться к такому подходу вряд ли стоит. Проблему систематизации физических величин решает только сравнение определяющих уравнений, а применение размерностей придает этому решению определенную наглядность.

В свою очередь, физические величины могут быть размерными и безразмерными. Величины, численное значение которых зависит от принятых масштабов, то есть от системы единиц измерения, называются размерными или именованными величинами, например: длина, время, сила, энергия, момент силы и т. д. Величины, численное значение которых не зависит от применяемой системы единиц измерения, называются безразмерными или отвлеченными величинами, например: отношение двух длин, отношение квадрата длины к площади, отношение энергии к моменту силы и др. Это понятие является условным, и поэтому некоторые величины можно рассматривать в одних случаях как размерные, а в других - как безразмерные.

Различные физические величины связаны между собой определенными соотношениями. Поэтому если некоторые из них принять за основные и установить для них какие-то единицы измерения, то единицы измерения остальных величин будут определенным образом выражаться через единицы измерения основных величин. Принятые для основных величин единицы измерения называются основными или первичными, а остальные - производными или вторичными.

В настоящее время большим распространением пользуются физическая и техническая системы единиц измерения. В физической системе за основные единицы измерения приняты сантиметр, грамм-масса и секунда (система CGS),

Метод размерностей работает в очень широком диапазоне порядков величин, он позволяет оценивать размеры Вселенной и характеристики атомного ядра, проникать внутрь звезд и находить ошибки у писателей - фантастов, изучать волны на поверхности лужи и подсчитывать количество взрывчатки при строительстве туннелей в горах.

Основная польза теории размерностей связана с возможностью изучения физических закономерностей в безразмерном виде, не зависящим от выбора систем единиц измерения. Результаты анализа проблемы в безразмерном виде применимы сразу к целому классу явлений.

Суммируя все вышеизложенное, сделаем следующие выводы:

1. Метод размерностей может быть использован в случае, если искомая величина может быть представлена в виде степенной функции.

2. Метод размерностей позволяет качественно решить задачу и получить ответ с точностью до числового коэффициента

3. В некоторых случаях метод размерностей является единственным способом решить задачу и хотя бы оценить ответ.

4. Решение задач методом размерностей является дополнительным или вспомогательным методом, позволяющим лучше понять взаимодействие величин, их влияние друг на друга.

5. Метод размерностей очень прост в математическом отношении.

Данный метод требует особого внимания. Более конкретного и детального изучения, с целью внедрения данного метода в школьный курс физики, для осознанного и целенаправленного использования метода размерности при решении поставленных задач перед учащимися.

Библиографическая ссылка

Полунина М.М., Маркова Н.А. МЕТОД РАЗМЕРНОСТЕЙ В ФИЗИКЕ // Международный студенческий научный вестник. – 2017. – № 4-5.;
URL: http://eduherald.ru/ru/article/view?id=17494 (дата обращения: 05.01.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Многие процессы, которые встречаются в практике, бывают настолько сложными, что не могут быть непосредственно описаны дифференциальными уравнениями . В таких случаях очень ценным приёмом для выявления соотношения между переменными величинами служит анализ размерностей.

Этот метод не даёт полных сведений о соотношении между переменными, которое, в конечном счёте, должно быть выявлено экспериментально. Тем не менее, этот метод позволяет значительно сократить объём экспериментальных работ.

Таким образом, эффективное применение метода размерности возможно только при комбинировании его с экспериментом; при этом должны быть известны все факторы или переменные величины, которые оказывают влияние на исследуемый процесс.

Анализ размерности даёт логичное распределение величин по безразмерным группам. В общем виде функциональная зависимость N может быть представлена в виде формулы, которая называется формулой размерности:

Сюда входит (k + 1) величин с включением и величины N. Они могут быть переменными, постоянными, размерными и безразмерными. Однако в данном случае необходимо, чтобы для числовых величин, входящих в уравнение, которое характеризует физическое явление, была бы принята одна и та же система основных единиц измерения. При соблюдении этого условия уравнение остаётся справедливым при произвольно выбранной системе единиц измерения. Далее, эти основные единицы должны быть независимыми по своим размерностям, а число их таким, чтобы была возможность представить через них размерности всех величин, входящих в функциональную зависимость (3.73).

Такими единицами измерения могут быть любые три величины, входящие в уравнение (3.73) и являющиеся независимыми друг от друга в отношении размерности. Если принять, например, за единицы измерения длину L и скорость V, тем самым имеем заданными единицу длины L и единицу времени . Таким образом, для третьей единицы измерения нельзя принимать любую величину, размерность которой содержит только длину и время, такую как, например, ускорение, так как единица этой величины уже есть заданной в результате выбора единиц длины и скорости. Поэтому, дополнительно должна быть выбрана любая величина, в размерность которой входит масса, например, плотность, вязкость, сила и т.п.

На практике, например, при гидравлических исследованиях, оказывается целесообразным принять следующие три единицы измерения: скорость V 0 любой частицы потока, любую длину (диаметр трубопровода D или его длину L), плотность ρ выбранной частицы.

Размерность этих единиц измерения:

М/с; м; кг/м 3 .

Таким образом, уравнение для размерностей в соответствии с функциональной зависимостью (3.73) может быть представлено в следующем виде:

Значения N i и n i , взятые в системе основных единиц (метр, секунда, килограмм), можно выразить безразмерными числами:

; .

Поэтому, вместо уравнения (3.73) можно написать уравнение, в котором все величины выражены в относительных единицах (по отношению к V 0 , L 0 , ρ 0):

Поскольку п 1 , п 2 , п 3 представляют собой, соответственно, V 0 , L 0 , ρ 0 , то первые три члена уравнения превращаются в три единицы и функциональная зависимость принимает вид:

. (3.76)

В соответствии с π-теоремой любое соотношение между размерными величинами можно сформулировать как соотношение между безразмерными величинами. При исследованиях эта теорема позволяет определить связь не между самими переменными, а между некоторыми безразмерными их соотношениями, составленными по определённым законам.

Таким образом, функциональная зависимость между k + 1 размерными величинами N и n i в общем случае выражается как соотношение между (k + 1- 3) величинами π и π i (i = 4,5, ..., k), каждая из которых является безразмерной степенной комбинацией величин, входящих в функциональную зависимость. Безразмерные числа π носят характер критериев подобия, как это видно из следующего примера.

Пример 3.3. Определить функциональную зависимость для силы сопротивления F (Н = кг·м/с 2), которую испытывает пластина при обтекании жидкостью в направлении её длины.

Функциональную зависимость силы сопротивления можно представить в виде функции от ряда независимых переменных и определить её в условиях сходства:

,

где скорость обтекания, м/с; площадь пластины, м 2 ; плотность жидкости, кг/м 3 ; динамический коэффициент вязкости, Па·с ([Па·с] = кг/м·с); ускорение свободного падения, м/с 2 ; давление, Па (Па = кг/м·с); отношение высоты пластины к ее длине; угол наклона пластины к направлению потока.

Таким образом, величины и безразмерные, остальные шесть – размерные. Три из них: , и приняты за основные. В соответствии с π-теоремой здесь возможны только три безразмерных соотношения. Следовательно:

для силы сопротивления:

1 = z (показатели слева и справа при кг);

2 = - x (показатели слева и справа при с);

1 = х + 2у - 3z (показатели слева и справа при м).

Решение этих уравнений даёт: x = 2; у = 1; z = 1.

Функциональная зависимость:

Аналогично получим:

Для вязкости:

имеем x 1 = 1; у 1 = 0,5; z 1 = 1.

Функциональная зависимость:

;

имеем x 2 = 2; у 2 = - 0,5; z 2 = 0.

Функциональная зависимость:

Для давления:

имеем x 3 = 2; у 3 = 0; z 3 = 1.

Функциональная зависимость:

.

Очевидно, что , ,

.

Отсюда можно сделать вывод, что после исследования данного процесса при некоторых размерах, скоростях и т.п., можно установить как он будет протекать при других размерах и скоростях в том случае, если безразмерные отношения, составленные из этих переменных, для обоих случаев будут одинаковые. Итак, выводы, полученные при экспериментах с телами данных размеров, движущихся с данной скоростью и т.д., будут, очевидно, справедливы и для любых других размеров тела, скорости и т.д. при условии равенства безразмерных отношений с теми, что наблюдались при экспериментах.

Пример 3.4. На основе предыдущих исследований на лабораторном устройстве определить функциональную зависимость мощности N (Вт = кг·м 2 /с 3) электродвигателя мешалки, которая необходима для перемешивания пульпы с реагентами в контактном чане.

Для подобия двух смесительных систем требуется:

Геометрическое подобие, при котором отношение величин для рассматриваемых систем должны быть равны между собой;

Кинематическое подобие, когда скорости в соответствующих точках должны быть в таком же отношении, как и скорости в других соответствующих точках, то есть пути движения пульпы должны быть подобными;

Динамическое подобие, которое требует, чтобы отношение сил в соответствующих точках было бы равным отношению сил в других соответствующих точках.

Если граничные условия фиксированные, можно одну переменную величину выразить через другие переменные, то есть функциональную зависимость мощности электродвигателя мешалки можно представить в виде функции от ряда независимых переменных величин и определить её по критериям подобия:

,

где диаметр мешалки, м; плотность пульпы, кг/м 3 ; скорость вращения мешалки, с -1 ; динамический коэффициент вязкости, Па·с (Па·с=кг/м·с); ускорение свободного падения, м/с 2 – угол наклона пластины к направлению потока.

Таким образом, имеем пять размерных величин, три из них: , и приняты за основные. В соответствии с π-теоремой здесь возможны только два безразмерных соотношения. Следовательно:

.

Учитывая равенство размерностей для числителя и знаменателя, найдём показатели степеней:

для мощности электродвигателя мешалки:

,

3 = z (показатели слева и справа при с);

1 = в (показатели слева и справа при кг);

2 = х - 3у (показатели слева и справа при м).

Решение этих уравнений даёт: x = 5; у = 1; z = 3.

Функциональная зависимость:

Аналогично получим:

Для вязкости:

имеем x 1 = 2; у 1 = 1; z 1 = 1.

Функциональная зависимость:

;

Для ускорения свободного падения:

имеем x 2 = 1; у 2 = 0; z 2 = 1.

Функциональная зависимость:

;

Очевидно, что , . Тогда искомая функциональная зависимость имеет вид:

.

Отсюда можно сделать вывод, что после нахождения функциональной зависимости мощности электродвигателя мешалки при некоторых её параметрах, можно установить какой она будет и при других размерах и скоростях и т.п. в том случае, если безразмерные отношения для обоих случаев будут одинаковы. Итак, выводы, полученные на экспериментальном устройстве, будут справедливы и для любых других при условии равенства безразмерных отношений с теми, что наблюдались при экспериментах.

Пример 3.5. Исследуется процесс обогащения в тяжелосредном сепараторе. На параметрической схеме процесса тяжелосредной сепарации (рис. 3.5) указаны входящие, исходящие и контролируемые параметры, а также возможные препятствия:

Входные и контролируемые параметры: Q вх - производительность сепаратора по исходному материалу; Q сусп - расход суспензии; V - объём ковша; Δρ - разница в плотностях суспензии и разделяемой фракции; ω - скорость вращения элеваторного колеса; п - число ковшей элеваторного колеса;

Выходные и контролируемые параметры: Q к-т - производительность сепаратора по концентрата; Q отх - производительность сепаратора по отходам;

Препятствия (неучтённые параметры, оказывающие влияние на процесс): влажность, гранулометрический и фракционный состав.

Проверяем, достаточно ли для расчёта модели количество параметров, для чего записываем размерности всех величин = кг/с; = м 3 /с; [Δ ] = кг/м 3 ; [V] = м 3 ; [ ] = c –1 ; = кг/с; [n] = 8.

Основных размерных величин m = 3 (кг, м, с), поэтому в расчётах может быть использовано:

параметра, то есть Q отх, V , Δ , ω.

0 = 3x - 3z (показатели слева и справа при L);

1 = - у - 3z (показатели слева и справа при T);

Таким образом, x = 1; у = - 2; z = 1, то есть функциональная зависимость производительности сепаратора по отходам от объёма ковша, скорости вращения элеваторного колеса и разницы в плотности суспензии и разделяемой фракции имеет вид:

Величина коэффициента k определяется на основе предыдущих исследований при фиксированных параметрах: V = 0,25 м 3 ; Δ = 100 кг/м 3 ; = 0,035 c –1 ; n = 8, в результате которых установлено, что Q отх = 42 кг/с:

Формула является математической моделью исследуемого процесса.

Пример 3.6. Исследуется процесс транспортировки концентрата крупностью 0,5 - 13 мм обезвоживающим элеватором багер-зумпфа:

Входные и контролируемые параметры: ω - вместимость ковша элеватора по твёрдому; ρ - плотность питания; V - скорость движения цепи элеватора;

Выходной и контролируемый параметр: Q - производительность обезвоживающего элеватора багер-зумпфа по классу 0,5 - 13 мм;

Постоянные параметры: коэффициент заполнения ковшей = 0,5; влажность, гранулометрический и фракционный состав.

В рассматриваемом примере:

Проверяем, достаточно ли для расчёта модели количество параметров, для чего записываем размерности всех величин: [ω] = м 3 ; [ρ] = кг/м 3 ; [V] = м/с.

Основных размерных величин т = 3 (кг, м, с), поэтому в расчётах может быть использовано:

параметра, то есть Q, V, , ω.

Поскольку учтены не все параметры, в функциональную зависимость между выбранными параметрами добавляется коэффициент k:

,

или с использованием основных единиц измерения M, L, T:

0 = 3x + у - 3z (показатели слева и справа при L);

1 = - у (показатели слева и справа при T);

1 = z (показатели слева и справа при M).

Таким образом, x = 2/3; у = 1; z = 1, то есть функциональная зависимость производительности обезвоживающего элеватора багер-зумпфа по классу 0,5-13 мм от объёма ковша, скорости движения цепи элеватора и плотности питания имеет вид:

.

Величина коэффициента k определяется на основе предыдущих исследований при фиксированных параметрах: V = 0,25 м/с; = 1400 кг/м 3 ; = 50·10 –3 м 3 в результате которых установлено, что Q = 1,5 кг/с, кроме того, следует учесть коэффициент заполнения ковшей = 0,5 и тогда:

.

Формула является математической моделью процесса транспортировки концентрата крупностью 0,5-13 мм исследуемым обезвоживающим элеватором багер-зумпфа.

Следует иметь в виду, что чем меньше значение коэффициента k, тем больше значение рассматриваемых параметров.

В физике... нет места для путаных мыслей…
Действительно понимающие природу
Того или иного явления должны получать основные
Законы из соображений размерности. Э. Ферми

Описание той или иной проблемы, обсуждение теоретических и экспериментальных вопросов начинается с качественного описания и оценки того эффекта, который дает данная работа.

При описании какой-то проблемы нужно, прежде всего, оценить порядок величины ожидаемого эффекта, простые предельные случаи и характер функциональной связи величин, описывающих данное явление. Эти вопросы называются качественным описанием физической ситуации.

Одним из наиболее эффективных методов такого анализа является метод размерностей.

Вот некоторые достоинства и приложения метода размерностей:

  • быстрая оценка масштабов исследуемых явлений;
  • получение качественных и функциональных зависимостей;
  • восстановление забытых формул на экзаменах;
  • выполнение некоторых заданий ЕГЭ;
  • осуществление проверки правильности решения задач.

Анализ размерностей применяется в физике еще со времен Ньютона. Именно Ньютон сформулировал тесно связанный с методом размерностей принцип подобия (аналогии).

Учащиеся впервые встречаются с методом размерностей при изучении теплового излучения в курсе физики 11 класса:

Спектральной характеристикой теплового излучения тела является спектральная плотность энергетической светимости r v – энергия электромагнитного излучения, испускаемого за единицу времени с единицы площади поверхности тела в единичном интервале частот.

Единица спектральной плотности энергетической светимости – джоуль на квадратный метр (1 Дж/м 2). Энергия теплового излучения черного тела зависит от температуры и длины волны. Единственной комбинацией этих величин с размерностью Дж/м 2 является kT/ 2 ( = c/v). Точный расчет, проделанный Рэлеем и Джинсом в 1900 г., в рамках классической волновой теории дал следующий результат:

где k – постоянная Больцмана.

Как показал опыт, данное выражение согласуется с экспериментальными данными лишь в области достаточно малых частот. Для больших частот особенно в ультрафиолетовой области спектра формула Рэлея-Джинса неверна: она резко расходится с экспериментом. Методы классической физики оказались недостаточными для объяснения характеристик излучения абсолютно черного тела. Поэтому расхождение результатов классической волновой теории с экспериментом в конце XIX в. получило название “ультрафиолетовой катастрофы”.

Покажем применение метода размерностей на простом и хорошо понятном примере.

Рисунок 1

Тепловое излучение абсолютно черного тела: ультрафиолетовая катастрофа – расхождение классической теории теплового излучения с опытом.

Представим себе, что тело массой m перемещается прямолинейно под действием постоянной силы F. Если начальная скорость тела равна нулю, а скорость в конце пройденного участка пути длиной s равна v, то можно записать теорему о кинетической энергии: .Между величинами F, m, v и s существует функциональная связь.

Предположим, что теорема о кинетической энергии забыта, а понимаем, что функциональная зависимость между v, F, m, и s существует и имеет степенной характер.

Здесь x, y, z – некоторые числа. Определим их. Знак ~ означает, что левая часть формулы пропорциональна правой, то есть , где k – числовой коэффициент, не имеет единиц измерения и с помощью метода размерностей не определяется.

Левая и правая части соотношения (1) имеют одинаковые размерности. Размерности величин v, F, m и s таковы: [v] = м/c = мc -1 , [F] = H = кгмс -2 , [m] = кг, [s] = м. (Символ [A] обозначает размерность величины A.) Запишем равенство размерностей в левой и правой частях соотношения (1):

м c -1 = кг x м x c -2x кг y м Z = кг x+y м x+z c -2x .

В левой части равенства вообще нет килограммов, поэтому и справа их быть не должно.

Это значит, что

Справа метры входят в степени x+z, а слева - в степени 1, поэтому

Аналогично, из сравнения показателей степени при секундах следует

Из полученных уравнений находим числа x, y, z:

x = 1/2, y = -1/2, z = 1/2.

Окончательная формула имеет вид

Возведя в квадрат левую и правую части этого соотношения, получаем, что

Последняя формула есть математическая запись теоремы о кинетической энергии, правда без числового коэффициента.

Принцип подобия, сформулированный Ньютоном, заключается в том, что отношение v 2 /s прямо пропорционально отношению F/m. Например, два тела с разными массами m 1 и m 2 ; будем действовать на них разными силами F 1 и F 2 , но таким образом, что отношения F 1 / m 1 и F 2 / m 2 будут одинаковыми. Под действием этих сил тела начнут двигаться. Если начальные скорости равны нулю, то скорости, приобретаемые телами на отрезке пути длины s, будут равны. Это и есть закон подобия, к которому мы пришли с помощью идеи о равенстве размерностей правой и левой частей формулы, описывающей степенную связь значения конечной скорости со значениями силы, массы и длины пути.

Метод размерностей был введен при построении основ классической механики, однако его эффективное применение для решения физических задач, началось в конце прошлого – в начале нашего века. Большая заслуга в пропаганде этого метода и решения с его помощью интересных и важных задач принадлежит выдающемуся физику лорду Рэлею. В 1915 году Рэлей писал: “ Я часто удивляюсь тому незначительному вниманию, которое уделяется великому принципу подобия, даже со стороны весьма крупных ученых. Нередко случается, что результаты кропотливых исследований преподносятся как вновь открытые “законы”, которые, тем не менее, можно было получить априорно в течение нескольких минут”.

В наши дни физиков уже нельзя упрекнуть в пренебрежительном отношении или в недостаточном внимании к принципу подобия и к методу размерностей. Рассмотрим одну из классических задач Рэлея.

Задача Рэлея о колебаниях шарика на струне.

Пусть между точками A и B натянута струна. Сила натяжения струны F. На середине этой струны в точке C находится тяжелый шарик. Длина отрезка AC (и соответственно CB) равна 1. Масса М шарика намного больше массы самой струны. Струну оттягивают и отпускают. Довольно ясно, что шарик будет совершать колебания. Если амплитуда эти x колебаний много меньше длины струны, то процесс будет гармоническим.

Определим частоту колебаний шарика на струне. Пусть величины , F, M и 1 связанны степенной зависимостью:

Показатели степени x, y, z – числа, которые нам нужно определить.

Выпишем размерности интересующих нас величин в системе СИ:

C -1 , [F] = кгм с -2 , [M] = кг, = м.

Если формула (2) выражает реальную физическую закономерность, то размерности правой и левой частей этой формулы должны совпадать, то есть должно выполняться равенство

с -1 = кг x м x c -2x кг y м z = кг x + y м x + z c -2x

В левую часть этого равенства вообще не входят метры и килограммы, а секунды входят в степени – 1. Это означает, что для x, y и z выполняются уравнения:

x+y=0, x+z=0, -2x= -1

Решая эту систему, находим:

x=1/2, y= -1/2, z= -1/2

Следовательно,

~F 1/2 M -1/2 1 -1/2

Точная формула для частоты отличается от найденной всего в раз ( 2 = 2F/(M1)).

Таким образом, получена не только качественная, но и количественная оценка зависимости для от величин F, M и 1. По порядку величины найденная степенная комбинация дает правильное значение частоты. Оценка всегда интересует по порядку величины. В простых задачах часто коэффициенты, неопределяемые методом размерностей, можно считать числами порядка единицы. Это не есть строгое правило.

При изучении волн рассматриваю качественное прогнозирование скорости звука методом анализа размерностей. Скорость звука ищем как скорость распространения волны сжатия и разрежения в газе. У учащихся не возникает сомнений в зависимости скорости звука в газе от плотности газа и его давления p.

Ответ ищем в виде:

где С – безразмерный множитель, числовое значение которого из анализа размерности найти нельзя. Переходя в (1) к равенству размерностей.

м/c = (кг/м 3) x Па y ,

м/с = (кг/м 3) x (кг м/(с 2 м 2)) y ,

м 1 с -1 = кг x м -3x кг y м y c -2y м -2y ,

м 1 с -1 = кг x+y м -3x + y-2y c -2y ,

м 1 с -1 = кг x+y м -3x-y c -2y .

Равенство размерностей в левой и правой части равенства дает:

x + y = 0, -3x-y = 1, -2y= -1,

x= -y, -3+x = 1, -2x = 1,

x = -1/2 , y = 1/2 .

Таким образом, скорость звука в газе

Формулу (2) при С=1 впервые получил И. Ньютон. Но количественные выводы этой формулы были весьма сложны.

Экспериментальное определение скорости звука в воздухе было выполнено в коллективной работе членов Парижской Академии наук в 1738 г., в которой измерялось время прохождения звуком пушечного выстрела расстояния 30 км.

Повторяя данный материал в 11-м классе, внимание учащихся обращается на то, что результат (2) можно получить для модели изотермического процесса распространения звука с использованием уравнения Менделеева - Клапейрона и понятия плотности:

– скорость распространения звука.

Познакомив учащихся с методом размерностей, даю им этим методом вывести основное уравнение МКТ для идеального газа.

Учащиеся понимают, что давление идеального газа зависит от массы отдельных молекул идеального газа, числа молекул в единице объема – n (концентрации молекул газа) и скорости движения молекул – .

Зная размерности величин, входящих в данное уравнение имеем:

,

,

,

Сравнивая размерности левой и правой части данного равенства, имеем:

Поэтому основное уравнение МКТ имеет такой вид:

- отсюда следует

Из заштрихованного треугольника видно, что

Ответ: В).

Это мы воспользовались методом размерности.

Метод размерностей кроме осуществления традиционной проверки правильности решения задач, выполнения некоторых заданий ЕГЭ, помогает находить функциональные зависимости между различными физическими величинами, но только для тех ситуаций, когда эти зависимости степенные. Таких зависимостей в природе много, и метод размерностей - хороший помощник при решении подобных задач.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении