teen-art.ru – Краткие содержания произведений русских и зарубежных

Краткие содержания произведений русских и зарубежных

Закон преломления света. Методические материалы. Как рассчитывается показатель преломления Показатель преломления воды относительно воздуха


Угол падения - угол a между направлением падающего луча и перпендикуляром к границе раздела двух сред, восстановленным в точке падения .

Угол отражения - угол β между этим перпендикуляром и направлением отраженного луча.

Законы отражения света:

1. Луч падающий, перпендикуляр к границе раздела двух сред в точке падения и луч отраженный лежат в одной плоскости.

2. Угол отражения равен углу падения .

Преломлением света называют изменение направления световых лучей при переходе света из одной прозрачной среды в другую.

Угол преломления - угол b между тем же перпендикуляром и направлением преломленного луча.

Скорость света в вакуумес = 3*10 8 м/с

Скорость света в среде V< c

Абсолютный показатель преломления среды показывает, во сколько раз скорость света v в дан­ной среде меньше, чем скорость света с в вакууме.

Абсолютный показатель преломления первой среды

Абсолютный показатель преломления второй среды

Абсолютный показатель преломления для вакуума равен 1

Скорость света в воздухе очень мало отличается от значения с, поэтому

Абсолютный показатель преломления для воздуха будем считать равным 1

Относительный показатель преломления показы­вает, во сколько раз изменяется скорость света при переходе луча из первой среды во вторую.


где V 1 и V 2 – скорости распространения света в первой и второй среде.

С учетом показателя преломления закон преломления света можно записать в виде

где n 21 относительный показатель преломления второй среды относительно первой;

n 2 и n 1 абсолютные показатели преломления второй и первой среды соответственно

Показатель преломления среды относительно воздуха (вакуума) можно найти в таблице 12 (задачник Рымкевича). Значения приведены для случая падения света из воздуха в данную среду.

Например, находим в таблице показатель преломления алмаза n= 2,42.



Это показатель преломления алмаза относительно воздуха (вакуума), то есть для абсолютных показателей преломления:


Законы отражения и преломления справедливы при об­ратном направлении хода световых лучей.

Из двух прозрачных сред оптически менее плотной называют среду с большей скоростью распространения света, или с меньшим показателем преломления .

При падении в оптически более плотную среду

угол преломления меньше угла падения.

При падении в оптически менее плотную среду

угол преломления больше угла падения

Полное внутреннее отражение

Если световые лучи из оптически более плот­ной среды 1 падают на границу раздела с оптиче­ски менее плотной сре­дой 2 (n 1 > n 2 ), то угол паде­ния меньше угла преломления a < b . При увели­чении угла падения можно подойти к такому его значению a пр , когда преломленный луч заскользит по границе раздела двух сред и не попадет во вторую среду,


Угол преломления b = 90°, при этом вся световая энергия отражается от границы раздела.

Предельным углом полного внутреннего отражения a пр называется угол, при котором преломленный луч скользит вдоль поверхности двух сред,

При переходе из среды опти­чески менее плотной в среду бо­лее плотную полное внутреннее отражение невозможно.

Есть ничто иное, как отношение синуса угла падения к синусу угла преломления

Показатель преломления зависит от свойств вещества и длины волны излучения, для некоторых веществ показатель преломления достаточно сильно меняется при изменении частоты электромагнитных волн от низких частот до оптических и далее, а также может ещё более резко меняться в определённых областях частотной шкалы. По умолчанию обычно имеется в виду оптический диапазон или диапазон, определяемый контекстом.

Величина n, при прочих равных условиях, обычно меньше единицы при переходе луча из среды более плотной в среду менее плотную, и больше единицы при переходе луча из среды менее плотной в среду более плотную (например, из газа или из вакуума в жидкость или твердое тело). Есть исключения из этого правила, и потому принято называть среду оптически более или менее плотной, чем другая (не путать с оптической плотностью как мерой непрозрачности среды).

В таблице приведены некоторые значения показателя преломления для некоторых сред:

Среда, обладающая большим показателем преломления, называется оптически более плотной. Обычно измеряется показатель преломления различных сред относительно воздуха. Абсолютный показатель преломления воздуха равен . Таким образом, абсолютный показатель преломления какой-либо среды связан с ее показателем преломления относительно воздуха формулой:

Показатель преломления зависит от длины волны света, то есть от его цвета. Различным цветам соответствуют различные показатели преломления. Это явление, называемое дисперсией, играет важную роль в оптике.

Глава 31

КАК ВОЗНИКАЕТ ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ


§ 1. Показатель преломления

§ 2. Поле, излучае­мое средой

§ 3. Дисперсия

§ 4. Поглощение

§ 5. Энергия световой волны


§ 1. Показатель преломления

Мы уже говорили, что свет в воде движется медленнее, чем в воздухе, а в воздухе чуть мед­леннее, чем в вакууме. Этот факт учитывается введением показателя преломления п. Попро­буем теперь понять, как возникает уменьшение скорости света. В частности, особенно важно проследить связь этого факта с некоторыми физическими предположениями или законами, которые были ранее высказаны и сводятся к следующему:

а) полное электрическое поле при любых физических условиях может быть пред­ставлено в виде суммы полей от всех зарядов во Вселенной;

б) поле излучения каждого отдельного за­ряда определяется его ускорением; уско­рение берется с учетом запаздывания, возникающего из-за конечной скорости распространения, всегда равной c. Но вы, наверное, приведете сразу в каче­стве примера кусок стекла и воскликнете: «Ерунда, это положение здесь не годится. Нужно говорить, что запаздывание отвечает скорости c/n». Однако это неправильно; по­пробуем разобраться, почему это неправильно. Наблюдателю кажется, что свет или любая другая электрическая волна распространяется сквозь вещество с показателем преломления n со скоростью с/n. И это с некоторой точностью так и есть. Но на самом деле поле создается движением всех зарядов, включая и заряды, движущиеся в среде, а все составные части поля, все его слагаемые распространяются с максимальной скоростью c. Задача наша со­стоит в том, чтобы понять, как возникает кажущаяся меньшая скорость.

Фиг. 31.1. Прохождение электрических волн сквозь слой прозрачного вещества.

Попробуем понять это явление на очень простом примере. Пусть источник (назовем его «внешним источником») помещен на большом расстоянии от тонкой прозрачной пластинки, ска­жем стеклянной. Нас интересует поле по другую сторону пла­стинки и достаточно далеко от нее. Все это схематично представ­лено на фиг. 31.1; точки S и Р здесь предполагаются удаленными на большое расстояние от плоскости. Согласно сформулирован­ным нами принципам, электрическое поле вдали от пластинки представляется (векторной) суммой полей внешнего источника (в точке S) и полей всех зарядов в стеклянной пластинке, причем каждое поле берется с запаздыванием при скорости с. Напомним, что поле каждого заряда не меняется от присутствия других зарядов. Это наши основные принципы. Таким образом, поле в точке Р

может быть записано в виде


где E s - поле внешнего источника; оно совпадало бы с иско­мым полем в точке Р, если бы не было пластинки. Мы ожидаем, что в присутствии любых движущихся зарядов поле в точке Р будет отлично от E r

Откуда берутся движущиеся заряды в стекле? Известно, что любой предмет состоит из атомов, содержащих электроны. Электрическое поле внешнего источника действует на эти атомы и раскачивает электроны взад и вперед. Электроны в свою оче­редь создают поле; их можно рассматривать как новые излуча­тели. Новые излучатели связаны с источником S, поскольку именно поле источника заставляет их колебаться. Полное поле содержит вклад не только от источника S, но и дополнительные вклады от излучения всех движущихся зарядов. Это значит, что поле в присутствии стекла изменяется, причем таким образом, что внутри стекла его скорость распространения кажется иной. Именно эту идею мы используем при количественном рассмот­рении.

Однако точный расчет очень сложен, потому что наше утверж­дение, что заряды испытывают только действие источника, не совсем правильно. Каждый данный заряд «чувствует» не только источник, но, подобно любому объекту во Вселенной, он чув­ствует и все остальные движущиеся заряды, в частности и заря­ды, колеблющиеся в стекле. Поэтому полное поле, действующее на данный заряд, представляет собой совокупность полей от всех остальных зарядов, движение которых в свою очередь зависит от движения данного заряда! Вы видите, что вывод точной фор­мулы требует решения сложной системы уравнений. Эта система очень сложна, и вы будете изучать ее значительно позднее.

А сейчас обратимся к совсем простому примеру, чтобы отчет­ливо понять проявление всех физических принципов. Предпо­ложим, что действие всех остальных атомов на данный атом мало по сравнению с действием источника. Иными словами, мы изучаем такую среду, в которой полное поле мало меняется из-за движения находящихся в ней зарядов. Такая ситуация ха­рактерна для материалов с показателем преломления, очень близким к единице, например для разреженных сред. Наши формулы будут справедливы для всех материалов с показателем преломления, близким к единице. Таким путем мы сможем из­бежать трудностей, связанных с решением полной системы урав­нений.

Вы могли по ходу дела заметить, что движение зарядов в пла­стинке вызывает еще один эффект. Это движение создает волну, распространяющуюся назад в направлении источника S. Такая обратно движущаяся волна есть не что иное, как луч света, отраженный прозрачным материалом. Приходит он не только с поверхности. Отраженное излучение генерируется во всех точках внутри материала, но суммарный эффект эквивалентен отражению с поверхности. Учет отражения лежит за границами применимости настоящего приближения, в котором показатель преломления считается настолько близким к единице, что от­раженным излучением можно пренебречь.

Прежде чем перейти к изучению показателя преломления, следует подчеркнуть, что в основе явления преломления лежит тот факт, что кажущаяся скорость распространения волны раз­лична в разных материалах. Отклонение луча света есть след­ствие изменения эффективной скорости в разных материалах.


Фиг. 31.2. Связь между прелом­лением и изменением скорости.


Чтобы пояснить этот факт, мы отметили на фиг. 31.2 ряд после­довательных максимумов в амплитуде волны, падающей из ва­куума на стекло. Стрелка, перпендикулярная указанным мак­симумам, отмечает направление распространения волны. Всюду в волне колебания происходят с одной и той же частотой. (Мы видели, что вынужденные колебания имеют ту же частоту, что и колебания источника.) Отсюда следует, что расстояния между максимумами волн по обе стороны поверхности совпадают вдоль самой поверхности, поскольку волны здесь должны быть согла­сованы и заряд на поверхности колеблется с одной частотой. Наименьшее расстояние между гребнями волн есть длина волны, равная скорости, деленной на частоту. В вакууме длина волны равна l 0 =2pс/w, а в стекле l=2pv/w или 2pс/wn, где v=c/n- скорость волны. Как видно из фиг. 31.2, единственный способ «сшить» волны на границе состоит в изменении направления движения волны в материале. Простое геометрическое рассуж­дение показывает, что условие «сшивания» сводится к равен­ству l 0 /sin q 0 =l/sinq, или sinq 0 /sinq=n, а это и есть закон Снелла. Пусть сейчас вас больше не волнует само отклонение све­та; нужно только выяснить, почему же в самом деле, эффектив­ная скорость света в материале с показателем преломления n равна с/n?

Вернемся снова к фиг. 31.1. Из сказанного ясно, что нужно вычислить поле в точке Р от осциллирующих зарядов стеклян­ной пластинки. Обозначим эту часть поля, которая представ­ляется вторым членом в равенстве (31.2), через Е а. Добавляя к ней поле источника E s , получаем полное поле в точке Р.

Стоящая перед нами здесь задача, пожалуй, самая сложная из тех, которыми мы будем заниматься в этом году, но сложность ее заключается только в большом количестве складываемых членов; каждый член сам по себе очень прост. В отличие от дру­гих случаев, когда мы обычно говорили: «Забудь вывод и смотри только на результат!», теперь для нас вывод гораздо важнее результата. Другими словами, нужно понять всю физическую «кухню», с помощью которой вычисляется показатель прелом­ления.

Чтобы понять, с чем мы имеем дело, найдем, каким должно быть «поправочное поле» Е а, чтобы полное поле в точке Р вы­глядело как поле источника, замедлившееся при прохождении через стеклянную пластинку. Если бы пластинка никак не влияла на поле, волна распространялась бы направо (по оси

2) по закону

или, используя экспоненциальную запись,


А что произошло бы, если бы волна проходила через пластин­ку с меньшей скоростью? Пусть толщина пластинки есть Dz. Если бы пластинки не было, то волна прошла бы расстояние Dz за время Dz/c. А поскольку кажущаяся скорость распростра­нения есть c/n, то потребуется время nDz/c, т. е. больше на не­которое добавочное время, равное Dt=(n-l) Dz/c. За пластин­кой волна снова движется со скоростью с. Учтем добавочное вре­мя на прохождение через пластинку, заменив t в уравнении (31.4) на (t-Dt), т. е. . Таким образом, если по­ставить пластинку, то формула для волны должна приобрести

Эту формулу можно переписать еще и по-другому:

откуда заключаем, что поле за пластинкой получается умноже­нием поля, которое было бы при отсутствии пластинки (т. е. E s), на ехр[-iw(n-1)Dz/c]. Как мы знаем, умножение осцилли­рующей функции типа e i w t на е i q означает изменение фазы коле­баний на угол q, возникающее из-за задержки при прохождении пластинки. Фаза запаздывает на величину w(n-1)Dz/c (именно запаздывает, поскольку в экспоненте стоит знак минус).

Мы говорили раньше, что пластинка добавляет поле Е а к первоначальному полю E S =E 0 ехр, а вместо этого нашли, что действие пластинки сводится к умножению поля на фактор, сдвигающий фазу колебаний. Однако здесь нет противоречия, поскольку тот же результат можно получить, приба­вив подходящее комплексное число. Это число особенно просто найти для малых Dz, так как е х при малых x с большой точностью равно (1+x).



Фиг. 31.3. Построение вектора поля прошедшей через материал волны при некоторых значениях t и z.


Тогда можно записать

Подставляя это равенство в (31 6), получаем

Первый член в этом выражении есть просто поле источника, а второй следует приравнять Е а - полю, создаваемому осцилли­рующими зарядами пластинки справа от нее. Поле Е а выражено здесь через показатель преломления n; оно, разумеется, зависит от напряженности поля источника.

Смысл сделанных преобразований легче всего понять с по­мощью диаграммы комплексных чисел (см. фиг. 31.3). Отло­жим сперва E s (z и t выбраны на рисунке такими, что E s лежит на действительной оси, но это не обязательно). За­держка при прохождении пластинки приводит к запаздыва­нию фазы E s , т. е. поворачивает E s на отрицательный угол. Это все равно, что добавить малый вектор Е а, направленный почти под прямым углом к E s . Именно такой смысл имеет множитель (-i) во втором члене (31.8). Он означает, что при действитель­ном E s величина Е а отрицательная и мнимая, а в общем случае E s и Ё а образуют прямой угол.

§ 2. Поле, излучаемое средой

Мы должны теперь выяснить, имеет ли поле осциллирующих зарядов в пластинке тот же вид, что и поле Е а во втором члене (31.8). Если это так, то тем самым мы найдем и показатель пре­ломления n [поскольку n - единственный фактор в (31.8), не выражающийся через фундаментальные величины]. Вернемся теперь к вычислению поля Е а, создаваемого зарядами пластин­ки. (Для удобства мы выписали в табл. 31.1 обозначения, которы­ми мы уже пользовались, и те, которые нам понадобятся в дальнейшем.)

ПРИ ВЫЧИСЛЕНИИ _______

E s поле, создаваемое источником

Е а поле, создаваемое зарядами пластинки

Dz толщина пластинки

z расстояние по нормали к пластинке

n показатель преломления

w частота (угловая) излучения

N число зарядов в единице объема пластинки

h число зарядов на единицу площади пластинки

q е заряд электрона

m масса электрона

w 0 резонансная частота электрона, связанного в атоме


Если источник S (на фиг. 31.1) находится слева на достаточно большом расстоянии, то поле E s имеет одинаковую фазу по всей длине пластинки, и вблизи пластинки его можно записать в виде

На самой пластинке в точке z=0 мы имеем

Это электрическое поле воздействует на каждый электрон в атоме, и они под действием электрической силы qE будут коле­баться вверх и вниз (если e0 направлено вертикально). Чтобы найти характер движения электронов, представим атомы в виде маленьких осцилляторов, т. е. пусть электроны упруго соеди­нены с атомом; это значит, что смещение электронов из нормаль­ного положения под действием силы пропорционально величине силы.


Если вы слышали о модели атома, в которой электроны вращаются по орбите вокруг ядра, то эта модель атома вам покажется просто смешной. Но это лишь упрощенная модель. Точная теория атома, основанная на квантовой механике, утверждает, что в процессах с участием света электроны ведут себя так, как будто они закреплены на пружинах. Итак, предположим, «что на электроны действует линейная возвращающая сила, и поэтому они ведут себя как осцилляторы с массой m и резонансной частотой w 0 . Мы уже занимались изучением таких осцилляторов и знаем уравнение движения, которому они под­чиняются:


(здесь F - внешняя сила).


В нашем случае внешняя сила создается электрическим полем волны источника, поэтому можно написать

где q e - заряд электрона, а в качестве E S мы взяли значение Е S = Е 0 е i w t из уравнения (31.10). Уравнение движения элект­рона приобретает вид

Решение этого уравнения, найденное нами раньше, выглядит следующим образом:

Мы нашли то, что хотели,- движение электронов в пластинке. Оно одинаково для всех электронов, и только среднее положение («нуль» движения) у каждого электрона свое.


Теперь мы в состоянии определить поле Е а, создаваемое атомами в точке Р, поскольку поле заряженной плоскости было найдено еще раньше (в конце гл. 30). Обращаясь к уравнению (30.19), мы видим, что поле Е а в точке Р есть скорость заряда, за­паздывающая по времени на величину z/c, умноженная на отри­цательную константу. Дифференцируя х из (31.16), получаем скорость и, введя запаздывание [или же просто подставляя х 0 из (31.15) в (30.18)], приходим к формуле

Как и следовало ожидать, вынужденное колебание электронов привело к новой волне, распространяющейся вправо (на это указывает множитель ехр); амплитуда волны про­порциональна числу атомов на единице площади пластинки (множитель h), а также амплитуде поля источника (Е 0). Кроме того, возникают и другие величины, зависящие от свойств ато­мов (q e , m , w 0).

Самый важный момент, однако, заключается в том, что фор­мула (31.17) для Е a очень похожа на выражение Е а в (31.8), полученное нами с помощью введения запаздывания в среде с показателем преломления n. Оба выражения совпадают, если положить



Заметьте, что обе стороны этого равенства пропорциональны Dz, поскольку h - число атомов на единицу площади - равно NDz, где N - число атомов на единицу объема пластинки. Под­ставляя NDz вместо hи сокращая на Dz, получаем наш основ­ной результат - формулу для показателя преломления, выра­женную через константы, зависящие от свойств атомов, и часто­ту света:

Эта формула «объясняет» показатель преломления, к чему мы и стремились.

§ 3. Дисперсия

Полученный нами результат очень интересен. Он дает не только показатель преломления, выраженный через атомные постоянные, но указывает, как меняется показатель преломления с частотой света w. С помощью простого утверждения «свет дви­жется с меньшей скоростью в прозрачной среде» мы никогда бы не смогли прийти к этому важному свойству. Нужно, конечно, еще знать число атомов в единице объема и собственную частоту атомов w 0 . Мы еще не умеем определять эти величины, поскольку они разные для разных материалов, а общую теорию по данному вопросу мы сейчас изложить не можем. Общая теория свойств различных веществ - их собственных частот и

т. п.- форму­лируется на основе квантовой механики. Кроме того, свойства различных материалов и величина показателя преломления сильно меняются от материала к материалу, и поэтому вряд ли можно надеяться, что вообще удастся получить общую форму­лу, пригодную для всех веществ.

Тем не менее попробуем применить нашу формулу к разным средам. Прежде всего, для большинства газов (например, для воздуха, большей части бесцветных газов, водорода, гелия и т. д.) собственные частоты колебаний электронов соответствуют уль­трафиолетовому свету. Эти частоты много больше частот види­мого света, т. е. w 0 много больше w, и в первом приближении можно пренебречь w 2 по сравнению с w 0 2 . Тогда показатель преломления получается почти постоянным. Итак, для газов показатель преломления можно считать константой. Этот вывод справедлив также и для большинства других прозрачных сред, например для стекла. Взглянув более внимательно на наше выражение, можно заметить, что при увеличении со знамена­тель уменьшается, а, следовательно, показатель преломления растет. Таким образом, n медленно увеличивается с ростом час­тоты. Для синего света показатель преломления больше, чем для красного. Именно поэтому синие лучи сильнее отклоняются призмой, чем красные.

Сам факт зависимости показателя преломления от частоты называется дисперсией, так как именно из-за дисперсии свет «диспергирует», раскладывается призмой в спектр. Формула, выражающая показатель преломления как функцию частоты, называется формулой дисперсии. Итак, мы нашли дисперсион­ную формулу. (За последние несколько лет «дисперсионные фор­мулы» стали использоваться в теории элементарных частиц.)

Наша дисперсионная формула предсказывает ряд новых инте­ресных эффектов. Если частота w 0 лежит в области видимого света или если измерять показатель преломления вещества, например стекла, для ультрафиолетовых лучей (где w близко к w 0), то знаменатель стремится к нулю, а показатель преломления становится очень большим. Пусть, далее, w больше w 0 . Такой случай возникает, например, если облучать вещества типа стекла рентгеновскими лучами. Кроме того, многие вещества, непро­зрачные для обычного света (скажем, уголь), прозрачны для рентгеновских лучей, поэтому можно говорить о показателе преломления этих веществ для рентгеновских лучей. Собствен­ные частоты атомов углерода гораздо меньше частоты рентгенов­ских лучей. Показатель преломления в этом случае дается нашей дисперсионной формулой, если положить w 0 =0 (т. е. мы прене­брегаем w 0 2 по сравнению с w 2).

Аналогичный результат получается при облучении газа сво­бодных электронов радиоволнами (или светом). В верхних слоях атмосферы ультрафиолетовое излучение Солнца выбивает элек­троны из атомов, в результате чего образуется газ свободных электронов. Для свободных электронов w 0 =0 (упругой возвращающей силы нет). Полагая в нашей дисперсионной формуле w 0 =0, получаем разумную формулу для показателя преломления радиоволн в стратосфере, где N теперь означает плотность сво­бодных электронов (число на единицу объема) в стратосфере. Но, как видно из формулы, при облучении вещества рентгеновскими лучами или электронного газа радиоволнами член (ш02-ш 2) ста­новится отрицательным, откуда следует, что n меньше единицы. Это значит, что эффективная скорость электромагнитных волн в веществе больше c! Может ли так быть?

Может. Хотя мы и говорили, что сигналы не могут распро­страняться быстрее скорости света, тем не менее показатель преломления при некоторой частоте может быть как больше, так и меньше единицы. Это просто означает, что сдвиг фазы за счет рассеяния света либо положителен, либо отрицателен. Кроме того, можно показать, что скорость сигнала определяется показателем преломления не при одном значении частоты, а при многих частотах. Показатель преломления указывает на ско­рость движения гребня волны. Но гребень волны не составляет еще сигнала. Чистая волна без всяких модуляций, т. е. состоя­щая из бесконечно повторяющихся правильных осцилляции, не имеет «начала», и ее нельзя использовать для посылки сигна­лов времени. Чтобы послать сигнал, волну нужно видоизменить, сделать на ней отметку, т. е. сделать ее кое-где потолще или по­тоньше. Тогда волна будет содержать не одну частоту, а целый ряд частот, и можно показать, что скорость распространения сигнала зависит не от одного значения показателя преломления, а от характера изменения показателя с частотой. Мы пока от­ложим этот вопрос. В гл. 48 (вып. 4) мы вычислим скорость рас­пространения сигналов в стекле и убедимся, что она не превышает скорости света, хотя гребни волны (понятия чисто математиче­ские) движутся быстрее скорости света.

Несколько слов по поводу механизма этого явления. Главная трудность здесь связана с тем фактом, что вынужденное движе­ние зарядов противоположно по знаку направлению поля. Дей­ствительно, в выражении (31.16) для смещения заряда х множи­тель (w 0 -w 2) отрицателен для малых w 0 и смещение имеет обратный знак по отношению к внешнему полю. Получается, что, когда поле действует с некоторой силой в одном направлении, заряд движется в противоположном направлении.

Как случилось, что заряд стал двигаться в сторону, проти­воположную силе? В самом деле, при включении поля заряд движется не противоположно силе. Сразу после включения поля возникает переходный режим, затем колебания устанавливаются и только после этого колебания заряды направлены про­тивоположно внешнему полю. Одновременно результирующее поле начинает опережать по фазе поле источника. Когда мы го­ворим, что «фазовая скорость», или скорость гребней волны, больше с, то мы имеем в виду именно опережение по фазе.

На фиг. 31.4 показан примерный вид волн, возникающих при резком включении волны источника (т. е. при посылке сигнала).


Фиг. 31.4. Волновые «сигналы».


Фиг. 31.5. Показатель преломления как функция частоты.

Из рисунка видно, что для волны, проходящей в среде с опере­жением по фазе, сигнал (т. е. начало волны) не опережает по времени сигнал источника.

Обратимся теперь снова к дисперсионной формуле. Следует помнить, что полученный нами результат несколько упрощает истинную картину явления. Чтобы быть точными, в формулу необходимо внести некоторые поправки. Прежде всего, в нашу модель атомного осциллятора следует ввести затухание (иначе осциллятор, раз начав, будет колебаться до бесконечности, что неправдоподобно). Движение затухающего осциллятора мы уже изучали в одной из прошлых глав [см. уравнение (23.8)]. Учет затухания приводит к тому, что в формулах (31.16), а поэтому и

в (31.19), вместо (w 0 2 -w 2) появляется (w 0 2 -w 2 +igw)" где g - коэффициент затухания.

Вторая поправка к нашей формуле возникает потому, что каждый атом обычно имеет несколько резонансных частот. Тогда вместо одного вида осцилляторов, нужно учесть действие не­скольких осцилляторов с разными резонансными частотами, ко­лебания которых происходят независимо друг от друга, и сло­жить вклады от всех осцилляторов.

Пусть в единице объема содержится N k электронов с соб­ственной частотой (w k и коэффициентом затухания g k . Наша дисперсионная формула примет в результате вид


Это окончательное выражение для показателя преломления справедливо для большого числа веществ. Примерный ход показателя преломления с частотой, даваемый формулой (31.20), приведен на фиг. 31.5.

Вы видите, что всюду, за исключением области, где w очень близко к одной из резонансных частот, наклон кривой положи­телен. Такая зависимость носит название «нормальной» диспер­сии (потому что этот случай встречается наиболее часто). Вблизи резонансных частот кривая имеет отрицательный наклон, и в этом случае говорят об «аномальной» дисперсии (имея в виду «ненормальную» дисперсию), потому что она была наблюдена задолго до того, как узнали об электронах, и казалась в то время необычной, С нашей точки зрения, оба наклона вполне «нор­мальны»!

§ 4 Поглощение


Вы уже, наверное, заметили нечто странное в последней фор­ме (31.20) нашей дисперсионной формулы. Из-за члена ig, учи­тывающего затухание, показатель преломления стал комплексной величиной! Что это означает? Выразим n через действительную и мнимую части:

причем n" и n" вещественны. (Перед in" стоит знак минус, а само n", как легко убедиться, положительно.)


Смысл комплексного показателя преломления легче всего понять, вернувшись к уравнению (31.6) для волны, проходящей сквозь пластинку с показателем преломления n. Подставив сюда комплексное n и произведя перегруппировку членов, получаем


Множители, обозначенные буквой В, имеют прежний вид и, как и раньше, описывают волну, фаза которой после прохожде­ния пластинки запаздывает на угол w (n"-1)Dz/c. Множитель А (экспонента с действительным показателем) представляет нечто новое. Показатель экспоненты отрицателен, следователь­но, А вещественно и меньше единицы. Множитель А уменьшает амплитуду поля; с ростом Dz величина А, а следовательно, и вся амплитуда падает. При прохождении через среду электро­магнитная волна затухает. Среда «поглощает» часть волны. Волна выходит из среды, потеряв часть своей энергии. Этому не следует удивляться, потому что введенное нами затухание осцилляторов обусловлено силой трения и непременно приводит к потере энергии. Мы видим, что мнимая часть комплексного показателя преломления n" описывает поглощение (или «ослаб­ление») электромагнитной волны. Иногда n" называют еще «ко­эффициентом поглощения».

Заметим также, что появление мнимой части n отклоняет стрелку, изображающую Е а на фиг. 31.3, к началу координат.

Отсюда ясно, почему поле ослабевает при прохождении через среду.

Обычно (как, например, у стекла) поглощение света очень мало. Именно так и получается по нашей формуле (31.20), по­тому что мнимая часть знаменателя ig k w много меньше дейст­вительной части (w 2 k -w 2). Однако когда частота w близка к w k , резонансный член (w 2 k -w 2) оказывается мал по сравнению с ig k w и показатель преломления становится почти чисто мнимым. Поглощение в этом случае определяет основной эффект. Именно поглощение дает в солнечном спектре темные линии. Свет, излу­чаемый поверхностью Солнца, проходит сквозь солнечную атмос­феру (а также через атмосферу Земли), и частоты, равные резо­нансным частотам атомов в атмосфере Солнца, сильно поглощаются.

Наблюдение подобных спектральных линий солнечного света позволяет установить резонансные частоты атомов, а следова­тельно, и химический состав солнечной атмосферы. Точно так же по спектру звезд узнают состав звездного вещества. С по­мощью этих методов обнаружили, что химические элементы на Солнце и звездах не отличаются от земных.

§ 5. Энергия световой волны

Как мы видели, мнимая часть показателя преломления ха­рактеризует поглощение. Попробуем теперь вычислить энергию, переносимую световой волной. Мы высказали соображения в пользу того, что энергия световой волны пропорциональна Е 2 , среднему по времени от квадрата электрического поля волны. Ослабление электрического поля за счет поглощения волны должно приводить к потере энергии, переходящей в какое-то трение электронов и в конечном счете, как нетрудно догадаться, в тепло.

Взяв часть световой волны, падающую на единичную пло­щадку, например на квадратный сантиметр поверхности нашей пластинки на фиг. 31.1, можно записать энергетический баланс в следующей форме (мы предполагаем, что энергия сохраняется!):

Падающая энергия в 1 сек = Выходящая энергия в 1 сек+Работа, совершаемая в1 сек. (31.23)

Вместо первого члена можно написать аЕ2s, где а - коэффициент пропорциональности, связывающий среднее значение Е 2 с энер­гией, переносимой волной. Во втором члене необходимо вклю­чить поле излучения атомов среды, т. е. мы должны записать

а (Еs+E a) 2 или (раскладывая квадрат суммы) a (E2s+2E s E a +-Е2а).

Все наши вычисления проводились в предположении, что

толщина слоя материала мала и показатель преломления его

незначительно отличается от единицы, тогда Е а оказывается много меньше E s (это было сделано с единственной целью - упростить вычисления). В рамках нашего приближения член

Е2а следует опустить, пренебрегая им по сравнению с E s E a . Вы можете на это возразить: «Тогда нужно отбросить и E s E a , потому что этот член много меньше El». Действительно, E s E a

много меньше Е2s, но если мы выбросим этот член, то получим приближение, в котором эффекты среды не учитываются совсем! Правильность наших вычислений в рамках сделанного прибли­жения проверяется тем, что мы всюду оставляли члены, пропор­циональные -NDz (плотности атомов в среде), но выбрасывали члены порядка (NDz) 2 и более высоких степеней по NDz. Наше приближение можно было бы назвать «приближением малой плотности».

Заметим, кстати, что наше уравнение баланса энергии не содержит энергии отраженной волны. Но так и должно быть, потому что амплитуда отраженной волны пропорциональна NDz, а энергия пропорциональна (NDz) 2 .


Чтобы найти последний член в (31.23), нужно вычислить работу, совершаемую падающей волной над электронами за 1 сек. Работа, как известно, равна силе, умноженной на расстоя­ние; отсюда работа в единицу времени (называемая также мощ­ностью) дается произведением силы на скорость. Точнее, она равна F·v, но в нашем случае сила и скорость имеют одинако­вое направление, поэтому произведение векторов сводится к обычному (с точностью до знака). Итак, работа, совершаемая в 1 сек над каждым атомом, равна q e E s v. Поскольку на единичную площадку приходится NDz атомов, последний член в уравнении (31.23) оказывается равным NDzq e E s v. Уравнение баланса энер­гии принимает вид

Члены aE 2 S сокращаются, и мы получаем

Возвращаясь к уравнению (30.19), находим Е а для больших z:

(напомним, что h=NDz). Подставляя (31.26) в левую часть равенства (31.25), получаем


Ho E s (в точке z) равно E s (в точке атома) с запаздыванием на z/c. Поскольку среднее значение не зависит от времени, оно не изменится, если временной аргумент запаздывает на z/c, т. е. оно равно E s (в точке атома)·v, но точно такое же среднее значение стоит и в правой части (31.25). Обе части (31.25) будут равны, если выполняется соотношение

Таким образом, если справедлив закон сохранения энергии, то количество энергии электрической волны, приходящееся на единичную площадку в единицу времени (то, что мы называем интенсивностью), должно быть равно e 0 сЕ 2 . Обозначив интен­сивность через S, получим

где черта означает среднее по времени. Из нашей теории показа­теля преломления получился замечательный результат!

§ 6. Дифракция света на непрозрачном экране

Теперь наступил удобный момент, чтобы применить методы настоящей главы к решению задачи другого рода. В гл. 30 мы говорили, что распределение интенсивности света - дифрак­ционную картину, возникающую при прохождении света через отверстия в непрозрачном экране,- можно найти, равномерно распределив источники (осцилляторы) по площади отверстий. Другими словами, дифрагированная волна выглядит так, как будто источником служит дырка в экране. Мы должны выяснить причину этого явления, ведь на самом деле именно в дырке нет источников, нет никаких зарядов, движущихся с ускорением.

Ответим сначала на вопрос: что такое непрозрачный экран? Пусть между источником S и наблюдателем Р находится совер­шенно непрозрачный экран, как показано на фиг. 31.6, а. Раз экран «непрозрачный», поле в точке Р отсутствует. Почему? Согласно общим принципам, поле в точке Р равно полю E s , взятому с некоторым запаздыванием, плюс поле всех остальных зарядов. Но, как было показано, поле E s приводит заряды экра­на в движение, а они в свою очередь создают новое поле, и, если экран непрозрачный, это поле зарядов должно в точности по­гасить поле E s с задней стенки экрана. Тут вы можете возра­зить: «Каким чудом они в точности погасятся! А что, если по­гашение неполное?» Если бы поля гасились не полностью (на­помним, что экран имеет некоторую толщину), поле в экране вблизи от задней стенки было бы отлично от нуля.



Фиг. 31.6. Дифракция на непрозрачном экране.

Но тогда оно приводило бы в движе­ние другие электроны экра­на, создавая тем самым но­вое поле, стремящееся ском­пенсировать первоначальное поле. Если экран толстый, в нем имеется достаточно много возможностей, чтобы свести остаточное поле к нулю. Пользуясь нашей термино­логией, можно сказать, что непрозрачный экран обладает большим и чисто мнимым показателем преломления и поэтому волна в нем экспоненциально затухает. Вам, наверное, извест­но, что тонкие слои большинства непрозрачных материалов, даже золота, прозрачны.

Посмотрим теперь, какая возникнет картина, если взять такой непрозрачный экран с отверстием, какой изображен на фиг. 31.6, б. Каким будет поле в точке P? Поле в точке Р слагает­ся из двух частей - поля источника S и поля экрана, т. е. поля от движения зарядов в экране. Движение зарядов в экра­не, по-видимому, очень сложное, но создаваемое ими поле на­ходится довольно просто.


Возьмем тот же самый экран, но закроем отверстия крышка­ми, как показано на фиг. 31.6, в. Пусть крышки сделаны из того же материала, что и экран. Заметьте, что крышки поставлены в тех местах, где на фиг. 31.6, б показаны отверстия. Давайте вычислим теперь поле в точке Р. Поле в точке Р в случае, по­казанном на фиг. 31.6, в, разумеется, равно нулю, но, с другой стороны, оно также равно полю источника плюс поле электронов экрана и крышек. Мы можем написать следующее равенство:


Штрихи относятся к случаю, когда отверстия закрыты крышками; значение E s в обоих случаях, конечно, одно и то же. Вычитая одно равенство из другого, получаем

Если отверстия не слишком малы (например, шириной во много длин волн), то присутствие крышек не должно повлиять на поле у экрана, исключая, быть может, узкую область вблизи краев отверстий. Пренебрегая этим малым эффектом, можно написать


E стенки =E" стенки и, следовательно,

Мы приходим к выводу, что поле в точке Р при открытых от­верстиях (случай б) равно (с точностью до знака) полю, созда­ваемому той частью сплошного экрана, которая находится на месте отверстий! (Знак нас не интересует, поскольку обычно имеют дело с интенсивностью, пропорциональной квадрату по­ля.) Этот результат не только справедлив (в приближении не очень малых отверстий), но и важен; кроме всего прочего, он подтверждает справедливость обычной теории дифракции:

Поле E"крышки вычисляется при условии, что движение за­рядов всюду в экране создает именно такое поле, которое гасит поле E s на задней поверхности экрана. Определив движение зарядов, мы складываем поля излучения зарядов в крышках и находим поле в точке Р.

Напомним еще раз, что наша теория дифракции приближен­ная и справедлива в случае не слишком малых отверстий. Если размер отверстий мал, член E"крышки также мал и разность E" стенки -E стенки (которую мы считали равной нулю) может быть сравнима и даже много больше ё" крышки. Поэтому наше прибли­жение оказывается негодным.

* Такая же формула получается и с помощью квантовой механики, однако интерпретация ее в этом случае иная. В квантовой механике даже одноэлектронный атом, например водород, имеет несколько резонансных частот. Поэтому вместо числа электронов N k с частотой w k появляется мно­житель Nf k где N - число атомов в единице объема, а число f k (называе­мое силой осциллятора) указывает, с каким весом входит данная резонансная частота w k .

Цифровой ресурс может использоваться для обучения в рамках программы основной и средней школы (базового уровня).

Модель представляет собой анимированную иллюстрацию по теме «Закон преломления света». Рассматривается система вода–воздух. Прорисовывается ход падающего, отраженного и преломленного лучей.

Краткая теория

Закон преломления света находит объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости их распространения во второй среде υ 2:

Работа с моделью

Кнопка Старт /Стоп позволяет начать или поставить на паузу эксперимент, кнопка Сброс – начать новый эксперимент.

Данная модель может быть применена в качестве иллюстрации на уроках изучения нового материала по теме «Закон преломления света». На примере этой модели можно рассмотреть с учащимися ход луча при переходе из оптически менее плотной среды в оптически более плотную.

Пример планирования урока с использованием модели

Тема «Преломление света»

Цель урока: рассмотреть явление преломления света, ход луча при переходе из одной среды в другую.

№ п/п Этапы урока Время, мин Приемы и методы
1 Организационный момент 2
2 Проверка домашнего задания по теме «Построение изображения в плоском зеркале» 10 Самостоятельная работа
3 Объяснение нового материала по теме «Преломление света» 20 Объяснение нового материала с использованием модели «Закон преломления света»
4 Решение качественных задач по теме «Закон преломления света» 10 Решение задач на доске
5 Объяснение домашнего задания 3

Таблица 1.

Примеры вопросов и заданий

  • Свет переходит из вакуума в стекло, при этом угол падения равен α, угол преломления β. Чему равна скорость света в стекле, если скорость света в вакууме равна c ?
  • Показатели преломления воды, стекла и алмаза относительно воздуха равны 1,33, 1,5, 2,42 соответственно. В каком из этих веществ предельный угол полного отражения имеет минимальное значение?
  • Водолаз рассматривает снизу вверх из воды лампу, подвешенную на высоте 1 м над поверхностью воды. Чему равна кажущаяся высота лампы под водой?

Процессы, которые связаны со светом, являются важной составляющей физики и окружают нас в нашей обыденной жизни повсеместно. Самые важные в данной ситуации являются законы отражения и преломления света, на которых зиждется современная оптика. Преломление света является важной составляющей частью современной науки.

Эффект искажения

Эта статья расскажет вам, что собой представляет явление преломления света, а также как выглядит закон преломления и что из него вытекает.

Основы физического явления

При падении луча на поверхность, которая разделяется двумя прозрачными веществами, имеющими разную оптическую плотность (к примеру, разные стекла или в воде), часть лучей будет отражена, а часть – проникнет во вторую структуру (например, пойдет распространяться в воде или стекле). При переходе из одной среды в другую для луча характерно изменение своего направления. Это и есть явление преломления света.
Особенно хорошо отражение и преломление света видно в воде.

Эффект искажения в воде

Смотря на вещи, находящиеся в воде, они кажутся искаженными. Особенно это сильно заметно на границе между воздухом и водой. Визуально кажется, что подводные предметы слегка отклонены. В описываемом физическом явлении как раз и кроется причина того, что в воде все объекты кажутся искаженными. При попадании лучей на стекло, данный эффект менее заметен.
Преломление света представляет собой физическое явление, которое характеризуется изменением направления движения солнечного луча в момент перемещения из одной среды (структуры) в другую.
Для улучшения понимания данного процесса, рассмотрим пример попадания луча из воздуха в воду (аналогично для стекла). При проведении перпендикуляра вдоль границы раздела можно измерить угол преломления и возвращения светового луча. Данный показатель (угол преломления) будет изменяться при проникновении потока в воду (внутрь стекла).
Обратите внимание! Под данным параметром понимается угол, который образует перпендикуляр, проведенный к разделу двух веществ при проникновении луча из первой структуры во вторую.

Прохождение луча

Этот же показатель характерен и для других сред. Установлено, что данный показатель зависит от плотности вещества. Если падение луча происходит из менее плотной в более плотную структуру, то угол создаваемого искажения будет больше. А если наоборот – то меньше.
При этом изменение наклона падения также скажется и на данном показателе. Но отношение между ними не остается постоянным. В то же время, отношение их синусов останется постоянной величиной, которую отображает следующая формула: sinα / sinγ = n, где:

  • n – постоянная величина, которая описана для каждого конкретного вещества (воздуха, стекла, воды и т.д.). Поэтому, какова будет данная величина можно определить по специальным таблицам;
  • α – угол падения;
  • γ – угол преломления.

Для определения этого физического явления и был создан закон преломления.

Физический закон

Закон преломления световых потоков позволяет определить характеристики прозрачных веществ. Сам закон состоит из двух положений:

  • первая часть. Луч (падающий, измененный) и перпендикуляр, который был восстановлен в точке падения на границе, например, воздуха и воды (стекла и т.д.), будут располагаться в одной плоскости;
  • вторая часть. Показатель соотношения синуса угла падения к синусу этого же угла, образовавшегося при переходе границы, будет величиной постоянной.

Описание закона

При этом в момент выхода луча из второй структуры в первую (например, при прохождении светового потока из воздуха, через стекло и обратно в воздух), также будет возникать эффект искажения.

Важный параметр для разных объектов

Основной показатель в данной ситуации — это соотношение синуса угла падения к аналогичному параметру, но для искажения. Как следует из закона, описанного выше, данный показатель являет собой постоянную величину.
При этом при изменении значения наклона падения, такая же ситуация будет характерна и для аналогичного показателя. Данный параметр имеет большое значение, поскольку является неотъемлемой характеристикой прозрачных веществ.

Показатели для разных объектов

Благодаря этому параметру можно довольно эффективно различать виды стекол, а также разнообразные драгоценные камни. Также он важен для определения скорости перемещения света в различных средах.

Обратите внимание! Наивысшая скорость светового потока – в вакууме.

При переходе из одного вещества в другие, его скорость будет уменьшаться. К примеру, у алмаза, который обладает самым большим показателем преломляемости, скорость распространения фотонов будет в 2,42 раза выше, чем у воздуха. В воде же они будут распространяться медленнее в 1,33 раза. Для разных видов стекол данный параметр колеблется в диапазоне от 1,4 до 2,2.

Обратите внимание! Некоторые стекла имеют показатель преломляемости 2,2, что очень близко к алмазу (2,4). Поэтому не всегда получится отличить стекляшку от реального алмаза.

Оптическая плотность веществ

Свет может проникать через разные вещества, которые характеризуются различными показателями оптической плотности. Как мы уже говорили ранее, используя данный закон можно определить характеристику плотности среды (структуры). Чем более плотной она будет, тем с меньшей скоростью в ней будет распространяться свет. Например, стекло или вода будут более оптически плотными, чем воздух.
Кроме того, что данный параметр является постоянной величиной, он еще и отражает отношение скорости света в двух веществах. Физический смысл можно отобразить в виде следующей формулы:

Данный показатель говорит, каким образом изменяется скорость распространения фотонов при переходе из одного вещества в другое.

Еще один важный показатель

При перемещении светового потока через прозрачные объекты возможна его поляризация. Она наблюдается при прохождении светового потока от диэлектрических изотропных сред. Поляризация возникает при прохождении фотонов через стекло.

Эффект поляризации

Частичная поляризация наблюдается, когда угол падения светового потока на границе двух диэлектриков будет отличаться от нуля. Степень поляризации зависит от того, каковы были углы падения (закон Брюстера).

Полноценное внутреннее отражение

Завершая наш небольшой экскурс, еще необходимо рассмотреть такой эффект, как полноценное внутреннее отражение.

Явление полноценного отображения

Для появления данного эффекта необходимо увеличение угла падения светового потока в момент его перехода из более плотного в менее плотную среду в границе раздела между веществами. В ситуации, когда данный параметр будет превосходить определенное предельное значение, тогда фотоны, падающие на границу этого раздела будут полностью отражаться. Собственно это и будет наше искомое явление. Без него невозможно было сделать волоконную оптику.

Заключение

Практическое применение особенностей поведения светового потока дали очень многое, создав разнообразные технические приспособления для улучшения нашей жизни. При этом свет открыл перед человечеством далеко не все свои возможности и его практический потенциал еще полностью не реализован.


Как сделать бумажный светильник своими руками
Как проверить работоспособность светодиодной ленты


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении