teen-art.ru – Краткие содержания произведений русских и зарубежных

Краткие содержания произведений русских и зарубежных

Как найти координаты вектора. Вычисление длины (модуля) вектора в MS EXCEL Вывод формулы длины вектора по его координатам

  • 6.4. Некоторые приложения скалярного произведения
  • 11. Выражение скалярного произведения вектора через координаты сомножителей. Теорема.
  • 12. Длина вектора, длина отрезка, угол между векторами, условие перпендикулярности векторов.
  • 13. Векторное произведение векторов, его свойства. Площадь параллелограмма.
  • 14. Смешанное произведение векторов, его свойства. Условие компланарности вектора. Объем параллелепипеда. Объём пирамиды.
  • 15. Способы задания прямой на плоскости.
  • 16. Нормальное уравнение прямой на плоскости (вывод). Геометрический смысл коэффициентов.
  • 17. Уравнение прямой на плоскости в отрезках (вывод).
  • Приведение общего уравнения плоскости к уравнению плоскости в отрезках.
  • 18. Уравнение прямой на плоскости с угловым коэффициентом (вывод).
  • 19. Уравнение прямой на плоскости, проходящей через две точки (вывод).
  • 20. Угол между прямыми на плоскости (вывод).
  • 21. Расстояние от точки до прямой на плоскости (вывод).
  • 22. Условия параллельности и перпендикулярности прямых на плоскости (вывод).
  • 23. Уравнение плоскости. Нормальное уравнение плоскости (вывод). Геометрический смысл коэффициентов.
  • 24. Уравнение плоскости в отрезках (вывод).
  • 25. Уравнение плоскости, проходящей через три точки (вывод).
  • 26. Угол между плоскостями (вывод).
  • 27. Расстояние от точки до плоскости (вывод).
  • 28. Условия параллельности и перпендикулярности плоскостей (вывод).
  • 29. Уравнения прямой в r3. Уравнения прямой, проходящей через две фиксированные точки (вывод).
  • 30. Канонические уравнения прямой в пространстве (вывод).
  • Составление канонических уравнений прямой в пространстве.
  • Частные случаи канонических уравнений прямой в пространстве.
  • Канонические уравнения прямой проходящей через две заданные точки пространства.
  • Переход от канонических уравнений прямой в пространстве к другим видам уравнений прямой.
  • 31. Угол между прямыми (вывод).
  • 32. Расстояние от точки до прямой на плоскости (вывод).
  • Расстояние от точки до прямой на плоскости – теория, примеры, решения.
  • Первый способ нахождения расстояния от заданной точки до заданной прямой на плоскости.
  • Второй способ, позволяющий найти расстояние от заданной точки до заданной прямой на плоскости.
  • Решение задач на нахождение расстояния от заданной точки до заданной прямой на плоскости.
  • Расстояние от точки до прямой в пространстве – теория, примеры, решения.
  • Первый способ нахождения расстояния от точки до прямойaв пространстве.
  • Второй способ, позволяющий находить расстояние от точки до прямойaв пространстве.
  • 33. Условия параллельности и перпендикулярности прямых в пространстве.
  • 34. Взаимное расположение прямых в пространстве и прямой с плоскостью.
  • 35. Классическое уравнение эллипса (вывод) и его построение. Каноническое уравнение эллипса имеет вид, где– положительные действительные числа, причём.Как построить эллипс?
  • 36. Классическое уравнение гиперболы (вывод) и его построение. Асимптоты.
  • 37. Каноническое уравнение параболы (вывод) и построение.
  • 38. Функция. Основные определения. Графики основных элементарных функций.
  • 39. Числовые последовательности. Предел числовой последовательности.
  • 40. Бесконечно малые и бесконечно большие величины. Теорема о связи между ними, свойства.
  • 41. Теоремы о действиях над переменными величинами, имеющими конечные пределы.
  • 42. Число e.
  • Содержание
  • Способы определения
  • Свойства
  • История
  • Приближения
  • 43. Определение предела функции. Раскрытие неопределённостей.
  • 44. Замечательные пределы, их вывод. Эквивалентные бесконечно малые величины.
  • Содержание
  • Первый замечательный предел
  • Второй замечательный предел
  • 45. Односторонние пределы. Непрерывность и разрывы функции. Односторонние пределы
  • Левый и правый пределы функции
  • Точка разрыва первого рода
  • Точка разрыва второго рода
  • Точка устранимого разрыва
  • 46. Определение производной. Геометрический смысл, механический смысл производной. Уравнения касательной и нормали к кривой и точке.
  • 47. Теоремы о производной обратной, сложной функций.
  • 48. Производные простейших элементарных функций.
  • 49. Дифференцирование параметрических, неявных и степенно-показательных функций.
  • 21. Дифференцирование неявных и параметрически заданных функций
  • 21.1. Неявно заданная функция
  • 21.2. Функция, заданная параметрически
  • 50. Производные высших порядков. Формула Тейлора.
  • 51. Дифференциал. Применение дифференциала к приближенным вычислениям.
  • 52. Теоремы Ролля, Лагранжа, Коши. Правило Лопиталя.
  • 53. Теорема о необходимом и достаточном условиях монотонности функции.
  • 54. Определение максимума, минимума функции. Теоремы о необходимом и достаточном условиях существования экстремума функции.
  • Теорема (необходимое условие экстремума)
  • 55. Выпуклость и вогнутость кривых. Точки перегиба. Теоремы о необходимом и достаточном условиях существования точек перегиба.
  • Доказательство
  • 57. Определители n-ого порядка, их свойства.
  • 58. Матрицы и действия над ними. Ранг матрицы.
  • Определение
  • Связанные определения
  • Свойства
  • Линейное преобразование и ранг матрицы
  • 59. Обратная матрица. Теорема о существовании обратной матрицы.
  • 60. Системы линейных уравнений. Матричное решение систем линейных уравнений. Правило Крамера. Метод Гаусса. Теорема Кронекера-Капелли.
  • Решение систем линейных алгебраических уравнений, методы решения, примеры.
  • Определения, понятия, обозначения.
  • Решение элементарных систем линейных алгебраических уравнений.
  • Решение систем линейных уравнений методом Крамера.
  • Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы).
  • Решение систем линейных уравнений методом Гаусса.
  • Решение систем линейных алгебраических уравнений общего вида.
  • Теорема Кронекера – Капелли.
  • Метод Гаусса для решения систем линейных алгебраических уравнений общего вида.
  • Запись общего решения однородных и неоднородных систем линейных алгебраических с помощью векторов фундаментальной системы решений.
  • Решение систем уравнений, сводящихся к слау.
  • Примеры задач, сводящихся к решению систем линейных алгебраических уравнений.
  • 1. Определение вектора. Длина вектора. Коллинеарность, компланарность векторов.

    Вектором называется направленный отрезок. Длиной или модулем вектора называется длина соответствующего направленного отрезка.

    Модуль вектора a обозначается . Векторa называется единичным, если . Векторы называются коллинеарными, если они параллельны одной прямой. Векторы называются компланарными, если они параллельны одной плоскости.

    2. Умножение вектора на число. Свойства операции.

    Умножение вектора на число, даёт противоположно направленный вектор в длиной враз больше. Умножение вектора на число в координатной форме производится умножением всех координат на это число:

    Исходя из определения получается выражение для модуля вектора, умноженного на число:

    Аналогично как и числами, операции сложение вектора с самим с собой можно записать через умножение на число:

    А вычитание векторов можно переписать через сложение и умножение:

    Исходя из того, что умножение на не меняет длины вектора, а меняет только направление и учитывая определение вектора, получаем:

    3. Сложение векторов, вычитание векторов.

    В координатном представлении вектор суммы получается суммированием соответствующих координат слагаемых:

    Для геометрического построения вектора суммы используют различные правила (методы), однако они все дают одинаковый результат. Использование того или иного правила обосновывается решаемой задачей.

    Правило треугольника

    Правило треугольника наиболее естественно следует из понимания вектора как переноса. Ясно, что результат последовательного применения двух переносов инекоторой точки будет тем же, что применение сразу одного переноса, соответствующего этому правилу. Для сложения двух векторовипо правилутреугольника оба эти вектора переносятся параллельно самим себе так, чтобы начало одного из них совпадало с концом другого. Тогда вектор суммы задаётся третьей стороной образовавшегося треугольника, причём его начало совпадает с началом первого вектора, а конец с концом второго вектора.

    Это правило прямо и естественно обобщается для сложения любого количества векторов, переходя в правило ломаной :

    Правило многоугольника

    Начало второго вектора совмещается с концом первого, начало третьего - с концом второго и так далее, сумма же векторов есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом-го (то есть изображается направленным отрезком, замыкающим ломаную). Так же называется правилом ломаной.

    Правило параллелограмма

    Для сложения двух векторов ипо правилупараллелограмма оба эти векторы переносятся параллельно самим себе так, чтобы их начала совпадали. Тогда вектор суммы задаётся диагональю построенного на них параллелограмма, исходящей из их общего начала. (Легко видеть, что эта диагональ совпадает с третьей стороной треугольника при использовании правила треугольника).

    Правило параллелограмма особенно удобно, когда есть потребность изобразить вектор суммы сразу же приложенным к той же точке, к которой приложены оба слагаемых - то есть изобразить все три вектора имеющими общее начало.

    Модуль суммы векторов

    Модуль суммы двух векторов можно вычислить, использую теорему косинусов :

    Где - косинус угла между векторамии.

    Если векторы изображены в соответствии с правилом треугольника и берется угол по рисунку - между сторонами треугольника - что не совпадает с обычным определением угла между векторами, а значит и с углом в приведенной формуле, то последний член приобретает знак минус, что соответствует теореме косинусов в ее прямой формулировке.

    Для суммы произвольного количества векторов применима аналогичная формула, в которой членов с косинусом больше: по одному такому члену существует для каждой пары векторов из суммируемого набора. Например, для трех векторов формула выглядит так:

    Вычитание векторов

    Два вектора и вектор их разности

    Для получения разности в координатной форме надо вычесть соответствующие координаты векторов:

    Для получения вектора разности начала векторов соединяются и началом векторабудет конец, а концом - конец. Если записать, используя точки векторов, то.

    Модуль разности векторов

    Три вектора , как и при сложении, образуют треугольник, и выражение для модуля разности получается аналогичным:

    где - косинус угла между векторамии

    Отличие от формулы модуля суммы в знаке перед косинусом, при этом надо хорошо следить, какой именно угол берется (вариант формулы модуля суммы с углом между сторонами треугольника при суммировании по правилу треугольника по виду не отличается от данной формулы для модуля разности, но надо иметь в виду, что для тут берутся разные углы: в случае суммы берётся угол, когда вектор переносится к концу вектора, когда же ищется модель разности, берётся угол между векторами, приложенными к одной точке; выражение для модуля суммы с использованием того же угла, что в данном выражении для модуля разности, отличается знаком перед косинусом).

    "

    Стандартное определение: «Вектор - это направленный отрезок». Обычно этим и ограничиваются знания выпускника о векторах. Кому нужны какие-то «направленные отрезки»?

    А в самом деле, что такое векторы и зачем они?
    Прогноз погоды. «Ветер северо-западный, скорость 18 метров в секунду». Согласитесь, имеет значение и направление ветра (откуда он дует), и модуль (то есть абсолютная величина) его скорости.

    Величины, не имеющие направления, называются скалярными. Масса, работа, электрический заряд никуда не направлены. Они характеризуются лишь числовым значением - «сколько килограмм» или «сколько джоулей».

    Физические величины, имеющие не только абсолютное значение, но и направление, называются векторными.

    Скорость, сила, ускорение - векторы. Для них важно «сколько» и важно «куда». Например, ускорение свободного падения направлено к поверхности Земли, а величина его равна 9,8 м/с 2 . Импульс, напряженность электрического поля, индукция магнитного поля - тоже векторные величины.

    Вы помните, что физические величины обозначают буквами, латинскими или греческими. Стрелочка над буквой показывает, что величина является векторной:

    Вот другой пример.
    Автомобиль движется из A в B . Конечный результат - его перемещение из точки A в точку B , то есть перемещение на вектор .

    Теперь понятно, почему вектор - это направленный отрезок. Обратите внимание, конец вектора - там, где стрелочка. Длиной вектора называется длина этого отрезка. Обозначается: или

    До сих пор мы работали со скалярными величинами, по правилам арифметики и элементарной алгебры. Векторы - новое понятие. Это другой класс математических объектов. Для них свои правила.

    Когда-то мы и о числах ничего не знали. Знакомство с ними началось в младших классах. Оказалось, что числа можно сравнивать друг с другом, складывать, вычитать, умножать и делить. Мы узнали, что есть число единица и число ноль.
    Теперь мы знакомимся с векторами.

    Понятия «больше» и «меньше» для векторов не существует - ведь направления их могут быть разными. Сравнивать можно только длины векторов.

    А вот понятие равенства для векторов есть.
    Равными называются векторы, имеющие одинаковые длины и одинаковое направление. Это значит, что вектор можно перенести параллельно себе в любую точку плоскости.
    Единичным называется вектор, длина которого равна 1 . Нулевым - вектор, длина которого равна нулю, то есть его начало совпадает с концом.

    Удобнее всего работать с векторами в прямоугольной системе координат - той самой, в которой рисуем графики функций. Каждой точке в системе координат соответствуют два числа - ее координаты по x и y , абсцисса и ордината.
    Вектор также задается двумя координатами:

    Здесь в скобках записаны координаты вектора - по x и по y .
    Находятся они просто: координата конца вектора минус координата его начала.

    Если координаты вектора заданы, его длина находится по формуле

    Сложение векторов

    Для сложения векторов есть два способа.

    1 . Правило параллелограмма. Чтобы сложить векторы и , помещаем начала обоих в одну точку. Достраиваем до параллелограмма и из той же точки проводим диагональ параллелограмма. Это и будет сумма векторов и .

    Помните басню про лебедя, рака и щуку? Они очень старались, но так и не сдвинули воз с места. Ведь векторная сумма сил, приложенных ими к возу, была равна нулю.

    2 . Второй способ сложения векторов - правило треугольника. Возьмем те же векторы и . К концу первого вектора пристроим начало второго. Теперь соединим начало первого и конец второго. Это и есть сумма векторов и .

    По тому же правилу можно сложить и несколько векторов. Пристраиваем их один за другим, а затем соединяем начало первого с концом последнего.

    Представьте, что вы идете из пункта А в пункт В , из В в С , из С в D , затем в Е и в F . Конечный результат этих действий - перемещение из А в F .

    При сложении векторов и получаем:

    Вычитание векторов

    Вектор направлен противоположно вектору . Длины векторов и равны.

    Теперь понятно, что такое вычитание векторов. Разность векторов и - это сумма вектора и вектора .

    Умножение вектора на число

    При умножении вектора на число k получается вектор, длина которого в k раз отличается от длины . Он сонаправлен с вектором , если k больше нуля, и направлен противоположно , если k меньше нуля.

    Скалярное произведение векторов

    Векторы можно умножать не только на числа, но и друг на друга.

    Скалярным произведением векторов называется произведение длин векторов на косинус угла между ними.

    Обратите внимание - перемножили два вектора, а получился скаляр, то есть число. Например, в физике механическая работа равна скалярному произведению двух векторов - силы и перемещения:

    Если векторы перпендикулярны, их скалярное произведение равно нулю.
    А вот так скалярное произведение выражается через координаты векторов и :

    Из формулы для скалярного произведения можно найти угол между векторами:

    Эта формула особенно удобна в стереометрии. Например, в задаче 14 Профильного ЕГЭ по математике нужно найти угол между скрещивающимися прямыми или между прямой и плоскостью. Часто задача 14 решается в несколько раз быстрее, чем классическим.

    В школьной программе по математике изучают только скалярное произведение векторов.
    Оказывается, кроме скалярного, есть еще и векторное произведение, когда в результате умножения двух векторов получается вектор. Кто сдает ЕГЭ по физике , знает, что такое сила Лоренца и сила Ампера. В формулы для нахождения этих сил входят именно векторные произведения.

    Векторы - полезнейший математический инструмент. В этом вы убедитесь на первом курсе.

    Нахождение координат вектора довольно часто встречаемое условие многих задач в математике. Умение находить координаты вектора поможет вам в других, более сложных задачах со схожей тематикой. В данной статье мы рассмотрим формулу нахождения координат вектора и несколько задач.

    Нахождение координат вектора в плоскости

    Что такое плоскость? Плоскостью считается двухмерное пространство, пространство с двумя измерениями (измерение x и измерение y). К примеру, бумага – плоскость. Поверхность стола – плоскость. Какая-нибудь необъемная фигура (квадрат, треугольник, трапеция) тоже является плоскостью. Таким образом, если в условии задачи нужно найти координаты вектора, который лежит на плоскости, сразу вспоминаем про x и y. Найти координаты такого вектора можно следующим образом: Координаты AB вектора = (xB – xA; yB – xA). Из формулы видно, что от координат конечной точки нужно отнять координаты начальной точки.

    Пример:

    • Вектор CD имеет начальные (5; 6) и конечные (7; 8) координаты.
    • Найти координаты самого вектора.
    • Используя вышеупомянутую формулу, получим следующее выражение: CD = (7-5; 8-6) = (2; 2).
    • Таким образом, координаты CD вектора = (2; 2).
    • Соответственно, x координата равна двум, y координата – тоже двум.

    Нахождение координат вектора в пространстве

    Что такое пространство? Пространство это уже трехмерное измерение, где даны 3 координаты: x, y, z. В случае, если нужно найти вектор, который лежит в пространстве, формула практически не меняется. Добавляется только одна координата. Для нахождения вектора нужно от координат конца отнять координаты начала. AB = (xB – xA; yB – yA; zB – zA)

    Пример:

    • Вектор DF имеет начальные (2; 3; 1) и конечные (1; 5; 2).
    • Применяя вышеупомянутую формулу, получим: Координаты вектора DF = (1-2; 5-3; 2-1) = (-1; 2; 1).
    • Помните, значение координат может быть и отрицательным, в этом нет никакой проблемы.


    Как найти координаты вектора онлайн?

    Если по каким-то причинам вам не хочется находить координаты самостоятельно, можно воспользоваться онлайн калькулятором . Для начала, выберите размерность вектора. Размерность вектора отвечает за его измерения. Размерность 3 означает, что вектор находится в пространстве, размерность 2 – что на плоскости. Далее вставьте координаты точек в соответствующие поля и программа определит вам координаты самого вектора. Все очень просто.


    Нажав на кнопку, страница автоматически прокрутится вниз и выдаст вам правильный ответ вместе с этапами решения.


    Рекомендовано хорошо изучить данную тему, потому что понятие вектора встречается не только в математике, но и в физике. Студенты факультета Информационных Технологий тоже изучают тему векторов, но на более сложном уровне.

    Длину вектора a → будем обозначать a → . Данное обозначение аналогично модулю числа, поэтому длину вектора также называют модулем вектора.

    Для нахождения длины вектора на плоскости по его координатам, требуется рассмотреть прямоугольную декартову систему координат O x y . Пусть в ней задан некоторый вектор a → с координатами a x ; a y . Введем формулу для нахождения длины (модуля) вектора a → через координаты a x и a y .

    От начала координат отложим вектор O A → = a → . Определим соответственные проекции точки A на координатные оси как A x и A y . Теперь рассмотрим прямоугольник O A x A A y с диагональю O A .

    Из теоремы Пифагора следует равенство O A 2 = O A x 2 + O A y 2 , откуда O A = O A x 2 + O A y 2 . Из уже известного определения координат вектора в прямоугольной декартовой системе координат получаем, что O A x 2 = a x 2 и O A y 2 = a y 2 , а по построению длина O A равна длине вектора O A → , значит, O A → = O A x 2 + O A y 2 .

    Отсюда получается, что формула для нахождения длины вектора a → = a x ; a y имеет соответствующий вид: a → = a x 2 + a y 2 .

    Если вектор a → дан в виде разложения по координатным векторам a → = a x · i → + a y · j → , то вычислить его длину можно по той же формуле a → = a x 2 + a y 2 , в данном случае коэффициенты a x и a y выступают в роли координат вектора a → в заданной системе координат.

    Пример 1

    Вычислить длину вектора a → = 7 ; e , заданного в прямоугольной системе координат.

    Решение

    Чтобы найти длину вектора, будем использовать формулу нахождения длины вектора по координатам a → = a x 2 + a y 2: a → = 7 2 + e 2 = 49 + e

    Ответ: a → = 49 + e .

    Формула для нахождения длины вектора a → = a x ; a y ; a z по его координатам в декартовой системе координат Oxyz в пространстве, выводится аналогично формуле для случая на плоскости (см. рисунок ниже)

    В данном случае O A 2 = O A x 2 + O A y 2 + O A z 2 (так как ОА – диагональ прямоугольного параллелепипеда), отсюда O A = O A x 2 + O A y 2 + O A z 2 . Из определения координат вектора можем записать следующие равенства O A x = a x ; O A y = a y ; O A z = a z ; , а длина ОА равна длине вектора, которую мы ищем, следовательно, O A → = O A x 2 + O A y 2 + O A z 2 .

    Отсюда следует, что длина вектора a → = a x ; a y ; a z равна a → = a x 2 + a y 2 + a z 2 .

    Пример 2

    Вычислить длину вектора a → = 4 · i → - 3 · j → + 5 · k → , где i → , j → , k → - орты прямоугольной системы координат.

    Решение

    Дано разложение вектора a → = 4 · i → - 3 · j → + 5 · k → , его координаты равны a → = 4 , - 3 , 5 . Используя выше выведенную формулу получим a → = a x 2 + a y 2 + a z 2 = 4 2 + (- 3) 2 + 5 2 = 5 2 .

    Ответ: a → = 5 2 .

    Длина вектора через координаты точек его начала и конца

    Выше были выведены формулы, позволяющие находить длины вектора по его координатам. Мы рассмотрели случаи на плоскости и в трехмерном пространстве. Воспользуемся ими для нахождения координат вектора по координатам точек его начала и конца.

    Итак, даны точки с заданными координатами A (a x ; a y) и B (b x ; b y) , отсюда вектор A B → имеет координаты (b x - a x ; b y - a y) значит, его длина может быть определена по формуле: A B → = (b x - a x) 2 + (b y - a y) 2

    А если даны точки с заданными координатами A (a x ; a y ; a z) и B (b x ; b y ; b z) в трехмерном пространстве, то длину вектора A B → можно вычислить по формуле

    A B → = (b x - a x) 2 + (b y - a y) 2 + (b z - a z) 2

    Пример 3

    Найти длину вектора A B → , если в прямоугольной системе координат A 1 , 3 , B - 3 , 1 .

    Решение

    Используя формулу нахождения длины вектора по координатам точек начала и конца на плоскости, получим A B → = (b x - a x) 2 + (b y - a y) 2: A B → = (- 3 - 1) 2 + (1 - 3) 2 = 20 - 2 3 .

    Второй вариант решения подразумевает под собой применение данных формул по очереди: A B → = (- 3 - 1 ; 1 - 3) = (- 4 ; 1 - 3) ; A B → = (- 4) 2 + (1 - 3) 2 = 20 - 2 3 . -

    Ответ: A B → = 20 - 2 3 .

    Пример 4

    Определить, при каких значениях длина вектора A B → равна 30 , если A (0 , 1 , 2) ; B (5 , 2 , λ 2) .

    Решение

    Для начала распишем длину вектора A B → по формуле: A B → = (b x - a x) 2 + (b y - a y) 2 + (b z - a z) 2 = (5 - 0) 2 + (2 - 1) 2 + (λ 2 - 2) 2 = 26 + (λ 2 - 2) 2

    Затем полученное выражение приравняем к 30 , отсюда найдем искомые λ:

    26 + (λ 2 - 2) 2 = 30 26 + (λ 2 - 2) 2 = 30 (λ 2 - 2) 2 = 4 λ 2 - 2 = 2 и л и λ 2 - 2 = - 2 λ 1 = - 2 , λ 2 = 2 , λ 3 = 0 .

    Ответ: λ 1 = - 2 , λ 2 = 2 , λ 3 = 0 .

    Нахождение длины вектора по теореме косинусов

    Увы, но в задачах не всегда бывают известны координаты вектора, поэтому рассмотрим другие способы нахождения длины вектора.

    Пусть заданы длины двух векторов A B → , A C → и угол между ними (или косинус угла), а требуется найти длину вектора B C → или C B → . В таком случае, следует воспользоваться теоремой косинусов в треугольнике △ A B C , вычислить длину стороны B C , которая и равна искомой длине вектора.

    Рассмотрим такой случай на следующем примере.

    Пример 5

    Длины векторов A B → и A C → равны 3 и 7 соответственно, а угол между ними равен π 3 . Вычислить длину вектора B C → .

    Решение

    Длина вектора B C → в данном случае равна длине стороны B C треугольника △ A B C . Длины сторон A B и A C треугольника известны из условия (они равны длинам соответствующих векторов), также известен угол между ними, поэтому мы можем воспользоваться теоремой косинусов: B C 2 = A B 2 + A C 2 - 2 · A B · A C · cos ∠ (A B , → A C →) = 3 2 + 7 2 - 2 · 3 · 7 · cos π 3 = 37 ⇒ B C = 37 Таким образом, B C → = 37 .

    Ответ: B C → = 37 .

    Итак, для нахождения длины вектора по координатам существуют следующие формулы a → = a x 2 + a y 2 или a → = a x 2 + a y 2 + a z 2 , по координатам точек начала и конца вектора A B → = (b x - a x) 2 + (b y - a y) 2 или A B → = (b x - a x) 2 + (b y - a y) 2 + (b z - a z) 2 , в некоторых случаях следует использовать теорему косинусов.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

  • 6.4. Некоторые приложения скалярного произведения
  • 11. Выражение скалярного произведения вектора через координаты сомножителей. Теорема.
  • 12. Длина вектора, длина отрезка, угол между векторами, условие перпендикулярности векторов.
  • 13. Векторное произведение векторов, его свойства. Площадь параллелограмма.
  • 14. Смешанное произведение векторов, его свойства. Условие компланарности вектора. Объем параллелепипеда. Объём пирамиды.
  • 15. Способы задания прямой на плоскости.
  • 16. Нормальное уравнение прямой на плоскости (вывод). Геометрический смысл коэффициентов.
  • 17. Уравнение прямой на плоскости в отрезках (вывод).
  • Приведение общего уравнения плоскости к уравнению плоскости в отрезках.
  • 18. Уравнение прямой на плоскости с угловым коэффициентом (вывод).
  • 19. Уравнение прямой на плоскости, проходящей через две точки (вывод).
  • 20. Угол между прямыми на плоскости (вывод).
  • 21. Расстояние от точки до прямой на плоскости (вывод).
  • 22. Условия параллельности и перпендикулярности прямых на плоскости (вывод).
  • 23. Уравнение плоскости. Нормальное уравнение плоскости (вывод). Геометрический смысл коэффициентов.
  • 24. Уравнение плоскости в отрезках (вывод).
  • 25. Уравнение плоскости, проходящей через три точки (вывод).
  • 26. Угол между плоскостями (вывод).
  • 27. Расстояние от точки до плоскости (вывод).
  • 28. Условия параллельности и перпендикулярности плоскостей (вывод).
  • 29. Уравнения прямой в r3. Уравнения прямой, проходящей через две фиксированные точки (вывод).
  • 30. Канонические уравнения прямой в пространстве (вывод).
  • Составление канонических уравнений прямой в пространстве.
  • Частные случаи канонических уравнений прямой в пространстве.
  • Канонические уравнения прямой проходящей через две заданные точки пространства.
  • Переход от канонических уравнений прямой в пространстве к другим видам уравнений прямой.
  • 31. Угол между прямыми (вывод).
  • 32. Расстояние от точки до прямой на плоскости (вывод).
  • Расстояние от точки до прямой на плоскости – теория, примеры, решения.
  • Первый способ нахождения расстояния от заданной точки до заданной прямой на плоскости.
  • Второй способ, позволяющий найти расстояние от заданной точки до заданной прямой на плоскости.
  • Решение задач на нахождение расстояния от заданной точки до заданной прямой на плоскости.
  • Расстояние от точки до прямой в пространстве – теория, примеры, решения.
  • Первый способ нахождения расстояния от точки до прямойaв пространстве.
  • Второй способ, позволяющий находить расстояние от точки до прямойaв пространстве.
  • 33. Условия параллельности и перпендикулярности прямых в пространстве.
  • 34. Взаимное расположение прямых в пространстве и прямой с плоскостью.
  • 35. Классическое уравнение эллипса (вывод) и его построение. Каноническое уравнение эллипса имеет вид, где– положительные действительные числа, причём.Как построить эллипс?
  • 36. Классическое уравнение гиперболы (вывод) и его построение. Асимптоты.
  • 37. Каноническое уравнение параболы (вывод) и построение.
  • 38. Функция. Основные определения. Графики основных элементарных функций.
  • 39. Числовые последовательности. Предел числовой последовательности.
  • 40. Бесконечно малые и бесконечно большие величины. Теорема о связи между ними, свойства.
  • 41. Теоремы о действиях над переменными величинами, имеющими конечные пределы.
  • 42. Число e.
  • Содержание
  • Способы определения
  • Свойства
  • История
  • Приближения
  • 43. Определение предела функции. Раскрытие неопределённостей.
  • 44. Замечательные пределы, их вывод. Эквивалентные бесконечно малые величины.
  • Содержание
  • Первый замечательный предел
  • Второй замечательный предел
  • 45. Односторонние пределы. Непрерывность и разрывы функции. Односторонние пределы
  • Левый и правый пределы функции
  • Точка разрыва первого рода
  • Точка разрыва второго рода
  • Точка устранимого разрыва
  • 46. Определение производной. Геометрический смысл, механический смысл производной. Уравнения касательной и нормали к кривой и точке.
  • 47. Теоремы о производной обратной, сложной функций.
  • 48. Производные простейших элементарных функций.
  • 49. Дифференцирование параметрических, неявных и степенно-показательных функций.
  • 21. Дифференцирование неявных и параметрически заданных функций
  • 21.1. Неявно заданная функция
  • 21.2. Функция, заданная параметрически
  • 50. Производные высших порядков. Формула Тейлора.
  • 51. Дифференциал. Применение дифференциала к приближенным вычислениям.
  • 52. Теоремы Ролля, Лагранжа, Коши. Правило Лопиталя.
  • 53. Теорема о необходимом и достаточном условиях монотонности функции.
  • 54. Определение максимума, минимума функции. Теоремы о необходимом и достаточном условиях существования экстремума функции.
  • Теорема (необходимое условие экстремума)
  • 55. Выпуклость и вогнутость кривых. Точки перегиба. Теоремы о необходимом и достаточном условиях существования точек перегиба.
  • Доказательство
  • 57. Определители n-ого порядка, их свойства.
  • 58. Матрицы и действия над ними. Ранг матрицы.
  • Определение
  • Связанные определения
  • Свойства
  • Линейное преобразование и ранг матрицы
  • 59. Обратная матрица. Теорема о существовании обратной матрицы.
  • 60. Системы линейных уравнений. Матричное решение систем линейных уравнений. Правило Крамера. Метод Гаусса. Теорема Кронекера-Капелли.
  • Решение систем линейных алгебраических уравнений, методы решения, примеры.
  • Определения, понятия, обозначения.
  • Решение элементарных систем линейных алгебраических уравнений.
  • Решение систем линейных уравнений методом Крамера.
  • Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы).
  • Решение систем линейных уравнений методом Гаусса.
  • Решение систем линейных алгебраических уравнений общего вида.
  • Теорема Кронекера – Капелли.
  • Метод Гаусса для решения систем линейных алгебраических уравнений общего вида.
  • Запись общего решения однородных и неоднородных систем линейных алгебраических с помощью векторов фундаментальной системы решений.
  • Решение систем уравнений, сводящихся к слау.
  • Примеры задач, сводящихся к решению систем линейных алгебраических уравнений.
  • 12. Длина вектора, длина отрезка, угол между векторами, условие перпендикулярности векторов.

    Вектор – это направленный отрезок, соединяющий две точки в пространстве или в плоскости. Векторы обычно обозначаются либо маленькими буквами, либо начальной и конечной точками. Сверху обычно ставят чёрточку.

    Например, вектор, направленный из точки A к точке B , можно обозначить a ,

    Нулевой вектор 0 или 0 - это вектор, у которого начальная и конечная точки совпадают, т.e. A = B . Отсюда, 0 =0 .

    Длина (модуль) вектора a - это длина отображающего его отрезка AB, обозначается | a | . В частности, | 0 | = 0.

    Векторы называются коллинеарными , если их направленные отрезки лежат на параллельных прямых. Коллинеарные векторы a и b обозначаются a || b .

    Три и более векторов называются компланарными , если они лежат в одной плоскости.

    Сложение векторов. Так как векторы - это направленные отрезки, то их сложение может быть выполнено геометрически . (Алгебраическое сложение векторов изложено ниже, в пункте «Единичные ортогональные векторы»). Предположим, что

    a = AB and b = CD ,

    тогда вектор __ __

    a + b = AB + CD

    есть результат выполнения двух операций:

    a ) параллельного переноса одногоиз векторов таким образом, чтобы его начальная точка совпала с конечной точкой второго вектора;

    б ) геометрического сложения , т.е. построения результирующего вектора, идущего от начальной точки неподвижного вектора к конечной точке перенесённого вектора.

    Вычитание векторов. Эта операция сводится к предыдущей путём замены вычитаемого вектора на противоположный: a b = a + ( b ) .

    Законы сложения.

    I. a + b = b + a (П е р е м е с т и т е л ь н ы й закон).

    II. (a + b ) + c = a + (b + c ) (С о ч е т а т е л ь н ы й закон).

    III. a + 0 = a .

    IV. a + ( a ) = 0 .

    Законы умножения вектора на число.

    I. 1 · a = a , 0 · a = 0 , m · 0 = 0 , (1) · a = a .

    II. m a = a m , | m a | = | m | · | a | .

    III. m (n a ) = (m n) a . (С о ч е т а т е л ь н ы й

    закон умножения на число ).

    IV. (m + n ) a = m a + n a , (Р а с п р е д е л и т е л ь н ы й

    m (a + b ) = m a + m b . закон умножения на число ).

    Скалярное произведение векторов. __ __

    Угол между ненулевыми векторами AB и CD – это угол, образованный векторами при их параллельном переносе до совмещения точек A и C. Скалярным произведением векторов a и b называется число, равное произведению их длин на косинус угла между ними:

    Если один из векторов нулевой, то их скалярное произведение в соответствии с определением равно нулю:

    ( a , 0 ) = ( 0 , b ) = 0 .

    Если оба вектора ненулевые, то косинус угла между ними вычисляется по формуле:

    Скалярное произведение (a , a ), равное | a | 2 , называется скалярным квадратом. Длина вектора a и его скалярный квадрат связаны соотношением:

    Скалярное произведение двух векторов:

    - положительно , если угол между векторами острый ;

    - отрицательно, если угол между векторами тупой .

    Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда угол между ними прямой, т.е. когда эти векторы перпендикулярны (ортогональны):

    Свойства скалярного произведения. Для любых векторов a , b , c и любого числа m справедливы следующие соотношения:

    I. (a , b ) = ( b , a ) . (П е р е м е с т и т е л ь н ы й закон)

    II. (m a , b ) = m ( a , b ) .

    III. (a + b , c ) = (a , c ) + (b , c ). (Р а с п р е д е л и т е л ь н ы й закон)

    Единичные ортогональные векторы. В любой прямоугольной системе координат можно ввести единичные попарно ортогональные векторы i , j и k , связанные с координатными осями: i – с осью Х , j – с осью Y и k – с осью Z . В соответствии с этим определением:

    (i , j ) = (i , k ) = (j , k ) = 0,

    | i | = | j | = | k | = 1.

    Любой вектор a может быть выражен через эти векторы единственным образом: a = x i + y j + z k . Другая форма записи: a = (x, y, z ). Здесь x , y , z - координаты вектора a в этой системе координат. В соответствии с последним соотношением и свойствами единичных ортогональных векторов i, j , k скалярное произведение двух векторов можно выразить иначе.

    Пусть a = (x, y, z ); b = (u, v, w ). Тогда ( a , b ) = xu + yv + zw .

    Скалярное произведение двух векторов равно сумме произведений соответствующих координат.

    Длина (модуль) вектора a = (x , y , z ) равна:

    Кроме того, теперь мы получаем возможность проведения алгебраических операций над векторами, а именно, сложение и вычитание векторов может выполняться по координатам:

    a + b = (x + u , y + v , z + w ) ;

    a b = (x u , y v , z w ) .

    Векторное произведение векторов. Векторным произведением [a, b ] векторов a и b (в указанном порядке) называется вектор:

    Существует другая формула длины вектора [ a, b ] :

    | [ a, b ] | = | a | | b | sin (a, b ) ,

    т.e. длина ( модуль ) векторного произведения векторов a и b равна произведению длин (модулей) этих векторов на синус угла между ними. Иначе говоря: длина (модуль) вектора [ a, b ] численно равна площади параллелограмма, построенного на векторах a и b .

    Свойства векторного произведения.

    I. Вектор [ a, b ] перпендикулярен (ортогонален) обоим векторам a и b .

    (Докажите это, пожалуйста!) .

    II. [ a , b ] = [ b , a ] .

    III. [ m a , b ] = m [ a , b ] .

    IV. [ a + b , c ] = [ a , c ] + [ b , c ] .

    V. [ a , [ b , c ] ] = b (a , c ) – c ( a , b ) .

    VI. [ [ a , b ] , c ] = b (a , c ) – a (b , c ) .

    Необходимое и достаточное условие коллинеарности векторов a = (x, y, z ) и b = (u, v, w ) :

    Необходимое и достаточное условие компланарности векторов a = (x, y, z ), b = (u, v, w ) и c = (p, q, r ) :

    П р и м е р. Даны векторы: a = (1, 2, 3) и b = (– 2 , 0 ,4).

    Вычислить их скалярное и векторное произведения и угол

    между этими векторами.

    Р е ш е н и е. Используя соответствующие формулы (см. выше), получим:

    a). скалярное произведение:

    ( a , b ) = 1 · (– 2) + 2 · 0 + 3 · 4 = 10 ;

    б). векторное произведение:

    "

    Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении