teen-art.ru – Краткие содержания произведений русских и зарубежных

Краткие содержания произведений русских и зарубежных

Скрещивание прямых. Признак скрещивающихся прямых. Как найти точку пересечения пространственных прямых

    СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ Большой Энциклопедический словарь

    скрещивающиеся прямые - прямые в пространстве, не лежащие в одной плоскости. * * * СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ, прямые в пространстве, не лежащие в одной плоскости … Энциклопедический словарь

    Скрещивающиеся прямые - прямые в пространстве, не лежащие в одной плоскости. Через С. п. можно провести параллельные плоскости, расстояние между которыми называется расстоянием между С. п. Оно равно кратчайшему расстоянию между точками С. п … Большая советская энциклопедия

    СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ - прямые в пространстве, не лежащие в одной плоскости. Углом между С. п. наз. любой из углов между двумя параллельными им прямыми, проходящими через произвольную точку пространства. Если а и b направляющие векторы С. п., то косинус угла между С. п … Математическая энциклопедия

    СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ - прямые в пространстве, не лежащие в одной плоскости … Естествознание. Энциклопедический словарь

    Параллельные прямые - Содержание 1 В Евклидовой геометрии 1.1 Свойства 2 В геометрии Лобачевского … Википедия

    Ультрапаралельные прямые - Содержание 1 В евклидовой геометрии 1.1 Свойства 2 В геометрии Лобачевского 3 См. также … Википедия

    РИМАНА ГЕОМЕТРИЯ - э л л и п т и ч е с к а я г е о м е т р и я, одна из неевклидовых геометрий, т. е. геометрич, теория, основанная на аксиомах, требования к рых отличны от требований аксиом евклидовой геометрии. В отличие от евклидовой геометрии в Р. г.… … Математическая энциклопедия


В этой статье сначала дадим определение угла между скрещивающимися прямыми и приведем графическую иллюстрацию. Далее ответим на вопрос: «Как найти угол между скрещивающимися прямыми, если известны координаты направляющих векторов этих прямых в прямоугольной системе координат»? В заключении попрактикуемся в нахождении угла между скрещивающимися прямыми при решении примеров и задач.

Навигация по странице.

Угол между скрещивающимися прямыми - определение.

К определению угла между скрещивающимися прямыми будем подходить постепенно.

Сначала напомним определение скрещивающихся прямых: две прямые в трехмерном пространстве называются скрещивающимися , если они не лежат в одной плоскости. Из этого определения следует, что скрещивающиеся прямые не пересекаются, не параллельны, и, тем более, не совпадают, иначе они обе лежали бы в некоторой плоскости.

Приведем еще вспомогательные рассуждения.

Пусть в трехмерном пространстве заданы две скрещивающиеся прямые a и b . Построим прямые a 1 и b 1 так, чтобы они были параллельны скрещивающимся прямым a и b соответственно и проходили через некоторую точку пространства M 1 . Таким образом, мы получим две пересекающиеся прямые a 1 и b 1 . Пусть угол между пересекающимися прямыми a 1 и b 1 равен углу . Теперь построим прямые a 2 и b 2 , параллельные скрещивающимся прямым a и b соответственно, проходящие через точку М 2 , отличную от точки М 1 . Угол между пересекающимися прямыми a 2 и b 2 также будет равен углу . Это утверждение справедливо, так как прямые a 1 и b 1 совпадут с прямыми a 2 и b 2 соответственно, если выполнить параллельный перенос, при котором точка М 1 перейдет в точку М 2 . Таким образом, мера угла между двумя пересекающимися в точке М прямыми, соответственно параллельными заданным скрещивающимся прямым, не зависит от выбора точки М .

Теперь мы готовы к тому, чтобы дать определение угла между скрещивающимися прямыми.

Определение.

Угол между скрещивающимися прямыми – это угол между двумя пересекающимися прямыми, которые соответственно параллельны заданным скрещивающимся прямым.

Из определения следует, что угол между скрещивающимися прямыми также не будет зависеть от выбора точки M . Поэтому в качестве точки М можно взять любую точку, принадлежащую одной из скрещивающихся прямых.

Приведем иллюстрацию определения угла между скрещивающимися прямыми.

Нахождение угла между скрещивающимися прямыми.

Так как угол между скрещивающимися прямыми определяется через угол между пересекающимися прямым, то нахождение угла между скрещивающимися прямыми сводится к нахождению угла между соответствующими пересекающимися прямыми в трехмерном пространстве.

Несомненно, для нахождения угла между скрещивающимися прямыми подходят методы, изучаемые на уроках геометрии в средней школе. То есть, выполнив необходимые построения, можно связать искомый угол с каким-либо известным из условия углом, основываясь на равенстве или подобии фигур, в некоторых случаях поможет теорема косинусов , а иногда к результату приводит определение синуса, косинуса и тангенса угла прямоугольного треугольника.

Однако очень удобно решать задачу нахождения угла между скрещивающимися прямыми методом координат. Именно его и рассмотрим.

Пусть в трехмерном пространстве введена Oxyz (правда, во многих задачах ее приходится вводить самостоятельно).

Поставим перед собой задачу: найти угол между скрещивающимися прямыми a и b , которым соответствуют в прямоугольной системе координат Oxyz некоторые уравнения прямой в пространстве .

Решим ее.

Возьмем произвольную точку трехмерного пространства М и будем считать, что через нее проходят прямые a 1 и b 1 , параллельные скрещивающимся прямым a и b соответственно. Тогда искомый угол между скрещивающимися прямыми a и b равен углу между пересекающимися прямыми a 1 и b 1 по определению.

Таким образом, нам осталось найти угол между пересекающимися прямыми a 1 и b 1 . Чтобы применить формулу для нахождения угла между двумя пересекающимися прямыми в пространстве нам нужно знать координаты направляющих векторов прямых a 1 и b 1 .

Как же мы их можем получить? А очень просто. Определение направляющего вектора прямой позволяет утверждать, что множества направляющих векторов параллельных прямых совпадают. Следовательно, в качестве направляющих векторов прямых a 1 и b 1 можно принять направляющие векторы и прямых a и b соответственно.

Итак, угол между двумя скрещивающимися прямыми a и b вычисляется по формуле
, где и - направляющие векторы прямых a и b соответственно.

Формула для нахождения косинуса угла между скрещивающимися прямыми a и b имеет вид .

Позволяет найти синус угла между скрещивающимися прямыми, если известен косинус: .

Осталось разобрать решения примеров.

Пример.

Найдите угол между скрещивающимися прямыми a и b , которые определены в прямоугольной системе координат Oxyz уравнениями и .

Решение.

Канонические уравнения прямой в пространстве позволяют сразу определить координаты направляющего вектор этой прямой – их дают числа в знаменателях дробей, то есть, . Параметрические уравнения прямой в пространстве также дают возможность сразу записать координаты направляющего вектора – они равны коэффициентам перед параметром, то есть, - направляющий вектор прямой . Таким образом, мы располагаем всеми необходимыми данными для применения формулы, по которой вычисляется угол между скрещивающимися прямыми:

Ответ:

Угол между заданными скрещивающимися прямыми равен .

Пример.

Найдите синус и косинус угла между скрещивающимися прямыми, на которых лежат ребра AD и BC пирамиды АВСD , если известны координаты ее вершин: .

Решение.

Направляющими векторами скрещивающихся прямых AD и BC являются векторы и . Вычислим их координаты как разность соответствующих координат точек конца и начала вектора:

По формуле мы можем вычислить косинус угла между указанными скрещивающимися прямыми:

Теперь вычислим синус угла между скрещивающимися прямыми:

Ответ:

В заключении рассмотрим решение задачи, в которой требуется отыскать угол между скрещивающимися прямыми, а прямоугольную систему координат приходится вводить самостоятельно.

Пример.

Дан прямоугольный параллелепипед ABCDA 1 B 1 C 1 D 1 , у которого АВ=3 , АD=2 и AA 1 =7 единиц. Точка E лежит на ребре АА 1 и делит его в отношении 5 к 2 считая от точки А . Найдите угол между скрещивающимися прямыми ВЕ и А 1 С .

Решение.

Так как ребра прямоугольного параллелепипеда при одной вершине взаимно перпендикулярны, то удобно ввести прямоугольную систему координат, и определить угол между указанными скрещивающимися прямыми методом координат через угол между направляющими векторами этих прямых.

Введем прямоугольную систему координат Oxyz следующим образом: пусть начало координат совпадает с вершиной А , ось Ox совпадает с прямой АD , ось Oy - с прямой АВ , а ось Oz – с прямой АА 1 .

Тогда точка В имеет координаты , точка Е - (при необходимости смотрите статью ), точка А 1 - , а точка С - . По координатам этих точек мы можем вычислить координаты векторов и . Имеем , .

Осталось применить формулу для нахождения угла между скрещивающимися прямыми по координатам направляющих векторов:

Ответ:

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Вам уже известны два случая взаимного расположения прямых в пространстве:

1.пересекающиеся прямые;

2.параллельные прямые.

Вспомним их определения.

Определение. Прямые в пространстве называются пересекающимися, если они лежат в одной плоскости и имеют одну общую точку

Определение. Прямые в пространстве называются параллельными, если они лежат в одной плоскости и не имеют общих точек.

Общим для этих определений является то, что прямые лежат в одной плоскости.

В пространстве так бывает не всегда. Мы можем иметь дело с несколькими плоскостями, и не всякие две прямые будут лежать в одной плоскости.

Например, ребра куба ABCDA1B1C1D1

AB и A1D1 лежат в разных плоскостях.

Определение. Две прямые называются скрещивающимися, если не существует такой плоскости, которая б проходила через эти прямые. Из определения понятно, что данные прямые не пересекаются и не параллельны.

Докажем теорему, которая выражает признак скрещивающихся прямых.

Теорема (признак скрещивающихся прямых).

Если одна из прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке не принадлежащей этой прямой, то эти прямые скрещивающиеся.

Прямая AB лежит в плоскости α. Прямая CD пересекает плоскость α в точке С, не принадлежащей прямой АВ.

Доказать, что прямые AB и DC - скрещиваются.

Доказательство

Доказательство будем вести методом от противного.

Допустим, АВ и CD лежат в одной плоскости, обозначим ее β.

Тогда плоскость β проходит через прямую AB и точку C.

По следствию из аксиом, через прямую AB и не лежащую на ней точку C можно провести плоскость, и притом только одну.

Но у нас уже есть такая плоскость - плоскость α.

Следовательно, плоскости β и α совпадают.

Но это невозможно, т.к. прямая CD пересекает α, а не лежит в ней.

Мы пришли к противоречию, следовательно, наше предположение неверно. AB и CD лежат в

разных плоскостях и являются скрещивающимися.

Теорема доказана.

Итак, возможны три способа взаимного расположения прямых в пространстве:

А) Прямые пересекаются, т.е имеют только одну общую точку.

Б) Прямые параллельны, т.е. лежат в одной плоскости и не имеют общих точек.

В) Прямые скрещиваются, т.е. не лежат в одной плоскости.

Рассмотрим еще одну теорему о скрещивающихся прямых

Теорема. Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.

АВ и CD - скрещивающиеся прямые

Доказать, что существует плоскость α такая, что прямая AB лежит в плоскости α, а прямая CD параллельна плоскости α.

Доказательство

Докажем существование такой плоскости.

1) Через точку A проведем прямую AE параллельно CD.

2) Так как прямые AE и АВ пересекаются, то через них можно провести плоскость. Обозначим ее через α.

3) Так как прямая CD параллельна AE, а AE лежит в плоскости α, то прямая CD ∥ плоскости α (по теореме о перпендикулярности прямой и плоскости).

Плоскость α - искомая плоскость.

Докажем, что плоскость α - единственная, удовлетворяющая условию.

Любая другая плоскость, проходящая через прямую АВ, будет пересекать AE, а значит и параллельную ей прямую CD. Т.е., любая другая плоскость, проходящая через AB пересекается с прямой CD, поэтому не является ей параллельной.

Следовательно, плоскость α - единственная. Теорема доказана.

Взаимное расположение двух прямых в пространстве.

Взаимное расположение двух прямых и пространстве характеризуется следующими тремя возможностями.

    Прямые лежат в одной плоскости и не имеют общих точек — параллельные прямые.

    Прямые лежат и одной плоскости и имеют одну общую точку — прямые пересекаются.

    В пространстве две прямые могут быть расположены еще так, что не лежат ни в одной плоскости. Такие прямые называются скрещивающимися (не пересекаются и не параллельны).

ПРИМЕР:

ЗАДАЧА 434 В плоскости лежит треугольник ABC, a

В плоскости лежит треугольник ABC, a точка D не находится в этой плоскости. Точки М, N и K соответсвенно серединные точки отрезков DA, DB и DC

Теорема. Если одна из двух прямых лежит в некоторой плоскости, а другая пересекает эту плоскость и точке, которая не лежит на первой прямой, то эти прямые скрещиваются.

На рис. 26 прямая a лежит в плоскости, а прямая с пересекает в точке N. Прямые a и с — скрещивающиеся.


Теорема. Через каждую из двух скрещивающихся прямых проходит только одна плоскость, параллельная другой прямой.


На рис. 26 прямые a и b скрещиваются. Черен прямую а проведена плоскость a (альфа) || b (в плоскости B (бета) указана прямая a1 || b).



Теорема 3.2.

Две прямые, параллельные третьей, параллельны.

Это свойство называется транзитивностью параллельности прямых.

Доказательство

Пусть прямые a и b одновременно параллельны прямой c . Допустим, что a не параллельна b , тогда прямая a пересекается с прямой b в некоторой точке A , не лежащей на прямой c по условию. Следовательно, мы имеем две прямые a и b , проходящие через точку A , не лежащую на данной прямой c , и одновременно параллельные ей. Это противоречит аксиоме 3.1. Теорема доказана.

Теорема 3.3.

Через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.

Доказательство

Пусть (AB ) данная прямая, C – точка, не лежащая на ней. Прямая AC разбивает плоскость на две полуплоскости. Точка B лежит в одной из них. В соответствии с аксиомой 3.2 можно от луча С A отложить угол (ACD ), равный углу (CAB ), в другую полуплоскость. ACD и CAB – равные внутренние накрест лежащие при прямых AB и CD и секущей (AC ) Тогда в силу теоремы 3.1 (AB ) || (CD ). С учетом аксиомы 3.1. Теорема доказана.

Свойство параллельных прямых задается следующей теоремой, обратной к теореме 3.1.

Теорема 3.4.

Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны.

Доказательство

Пусть (AB ) || (CD ). Предположим, что ACD ≠ BAC . Через точку A проведем прямую AE так, что EAC = ACD . Но тогда по теореме 3.1 (AE ) || (CD ), а по условию – (AB ) || (CD ). В соответствии с теоремой 3.2 (AE ) || (AB ). Это противоречит теореме 3.3, по которой через точку A , не лежащую на прямой CD , можно провести единственную прямую, параллельную ей. Теорема доказана.

Рисунок 3.3.1.

На основании этой теоремы легко обосновываются следующие свойства.

    Если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны.

    Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180°.

Следствие 3.2.

Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.

Понятие параллельности позволяет ввести следующее новое понятие, которое в дальнейшем понадобится в 11-й главе.

Два луча называются одинаково направленными , если существует такая прямая, что, во-первых, они перпендикулярны этой прямой, во-вторых, лучи лежат в одной полуплоскости относительно этой прямой.

Два луча называются противоположно направленными , если каждый из них одинаково направлен с лучом, дополнительным к другому.

Одинаково направленные лучи AB и CD будем обозначать: а противоположно направленные лучи AB и CD –


Рисунок 3.3.2.

Признак скрещивающихся прямых.

Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.

Случаи взаимного расположения прямых в пространстве.

  1. Возможны четыре различных случая расположения двух прямых в пространстве:


    – прямые скрещивающиеся, т.е. не лежат в одной плоскости;

    – прямые пересекаются, т.е. лежат в одной плоскости и имеют одну общую точку;

    – прямые параллельные, т.е. лежат в одной плоскости и не пересекаются;

    – прямые совпадают.


    Получим признаки этих случаев взаимного расположения прямых, заданных каноническими уравнениями



    где — точки, принадлежащие прямым и соответственно, a — направляющие векторы (рис.4.34). Обозначим через вектор, соединяющий заданные точки.

    Перечисленным выше случаям взаимного расположения прямых и соответствуют следующие признаки:


    – прямые и скрещивающиеся векторы не компланарны;


    – прямые и пересекаются векторы компланарны, а векторы не коллинеарны;


    – прямые и параллельные векторы коллинеарны, а векторы не коллинеарны;


    – прямые и совпадают векторы коллинеарны.


    Эти условия можно записать, используя свойства смешанного и векторного произведений. Напомним, что смешанное произведение векторов в правой прямоугольной системе координат находится по формуле:



    и пересекаются определитель равен нулю, а вторая и третья его строки не пропорциональны, т.е.

    – прямые и параллельные вторая и третья строки определителя пропорциональны, т.е. а первые две строки не пропорциональны, т.е.


    – прямые и совпадают все строки определителя пропорциональны, т.е.


Доказательство признака скрещивающихся прямых.

Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти две прямые скрещиваются.

Доказательство

Пусть a принадлежит α, b пересекается α = A, A не принадлежит a (чертеж 2.1.2). Допустим, что прямые a и b не скрещивающиеся, то есть они пересекаются. Тогда существует плоскость β, которой принадлежат прямые a и b. В этой плоскости β лежат прямая a и точка A. Поскольку прямая a и точка A вне ее определяют единственную плоскость, то β = α. Но b водит β и b не принадлежит α, следовательно, равенство β = α невозможно.

Скрещивающиеся прямые легко распознать по таким признакам. Признак 1. Если на двух прямых найдутся четыре точки, не лежащие в одной плоскости, то эти прямые скрещиваются (рис. 1.21).

Действительно, если бы данные прямые пересекались бы или были бы параллельны, то они лежали бы в одной плоскости, а тогда и данные точки лежали бы в одной плоскости, что противоречит условию.

Признак 2. Если прямая О лежит в плоскости , а прямая b пересекает плоскость а в некоторой точке

М, не лежащей на прямой а, то прямые а и b скрещиваются (рис. 1.22).

Действительно, взяв любые две точки на прямой а и любые две точки на прямой b, мы приходим к признаку 1, т.е. а и b скрещиваются.

Реальные примеры скрещивающихся прямых дают транспортные развязки (рис. 1.23).

В пространстве пар скрещивающихся прямых, в известном смысле, больше, чем пар параллельных или пересекающихся прямых. Это можно пояснить так.

Возьмем в пространстве некоторую точку А и некоторую прямую а, не проходящую через точку А. Чтобы провести через точку А прямую, параллельную прямой а, надо через точку А и прямую а провести плоскость а (предложение 2 п. 1.1), а затем в плоскости а провести прямую b, параллельную прямой а (рис. 1.24).

Такая прямая b лишь одна. Все прямые, проходящие через точку А и пересекающие прямую О, также лежат в плоскости а и заполняют ее всю за исключением прямой b. Все же остальные прямые, идущие через А и заполняющие все пространство кроме плоскости а, будут скрещиваться с прямой а. Можно сказать, что скрещивающиеся прямые в пространстве - это общий случай, а пересекающиеся и параллельные - это частные случаи. "Малые шевеления" скрещивающихся прямых оставляют их скрещивающимися. Но свойства быть параллельными или пересекающимися при "малых шевелениях" в пространстве не сохраняются.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении