teen-art.ru – Краткие содержания произведений русских и зарубежных

Краткие содержания произведений русских и зарубежных

Чему равна масса урана 235. Атомные производства (комбинаты) военного назначения. Капельная модель ядра

Ядерное топливо - материал, используемый в ядерных реакторах для проведения управляемой цепной реакции. Оно чрезвычайно энергоемко и небезопасно для человека, что накладывает ряд ограничений на его использование. Сегодня мы с вами узнаем, что собой представляет топливо ядерного реактора, как оно классифицируется и производится, где применяется.

Ход цепной реакции

Во время цепной ядерной реакции, ядро делится на две части, которые называют осколками деления. Одновременно с этим выделяется несколько (2-3) нейтронов, которые впоследствии вызывают деление следующих ядер. Процесс происходит при попадании нейтрона в ядро исходного вещества. Осколки деления имеют большую кинетическую энергию. Их торможение в веществе сопровождается выделением огромного количества тепла.

Осколки деления, вместе с продуктами их распада, называют продуктами деления. Ядра, которые делятся нейтронами любой энергии, называют ядерным горючим. Как правило, они представляют собой вещества с нечетным количеством атомов. Некоторые ядра делятся сугубо нейтронами, энергия которых выше определенного порогового значения. Это преимущественно элементы с четным числом атомов. Такие ядра называют сырьевым материалом, так как в момент захвата нейтрона пороговым ядром образуются ядра горючего. Комбинация горючего и сырьевого материала называется тем самым ядерным топливом.

Классификация

Ядерное топливо делится на два класса:

  1. Природное урановое. Оно содержит делящиеся ядра урана-235 и сырье урана-238, которое способно образовывать плутоний-239 при захвате нейтрона.
  2. Вторичное топливо, не встречающееся в природе. К нему, кроме всего прочего, относится плутоний-239, который получается из топлива первого вида, а также уран-233, образующийся при захвате нейтронов ядрами тория-232.

С точки зрения химического состава, бывают такие виды ядерного топлива:

  1. Металлическое (в том числе сплавы);
  2. Оксидное (к примеру, UO 2);
  3. Карбидное (к примеру PuC 1-x);
  4. Смешанное;
  5. Нитридное.

ТВЭЛ и ТВС

Топливо для ядерных реакторов используется в виде таблеток небольшого размера. Они помещаются в герметично-закрытые тепловыделяющие элементы (ТВЭЛы), которые, в свою очередь, по несколько сотен объединяются в тепловыделяющие сборки (ТВС). К ядерному топливу предъявляются высокие требования по совместимости с оболочками ТВЭЛов. Оно должно иметь достаточную температуру плавления и испарения, хорошую теплопроводность и не сильно увеличиваться в объеме при нейтронном облучении. Также во внимание берется технологичность производства.

Применение

На атомные электростанции и другие ядерные установки топливо приходит в виде ТВС. Они могут загружаться в реактор как во время его работы (на место выгоревших ТВС), так и во время ремонтной кампании. В последнем случае тепловыделяющие сборки меняют крупными группами. При этом лишь третья часть топлива заменяется полностью. Наиболее выгоревшие сборки выгружаются из центральной части реактора, а на их место ставятся частично выгоревшие сборки, которые ранее находились в менее активных областях. Следовательно, на место последних устанавливаются новые ТВС. Эта нехитрая схема перестановки считается традиционной и имеет ряд преимуществ, главным из которых является обеспечение равномерного энерговыделения. Конечно же, это условная схема, которая дает лишь общие представления о процессе.

Выдержка

После изъятия отработанного ядерного топлива из активной зоны реактора, его отправляют в бассейн выдержки, который, как правило, находится неподалеку. Дело в том, что в отработанных ТВС содержится огромное количество осколков деления урана. После выгрузки из реактора каждый ТВЭЛ содержит порядка 300 тысяч Кюри радиоактивных веществ, выделяющих 100 кВт/час энергии. За счет нее топливо саморазогревается и становится высокорадиоактивным.

Температура недавно выгруженного топлива может достигать 300°С. Поэтому его выдерживают на протяжении 3-4 лет под слоем воды, температура которой поддерживается в установленном диапазоне. По мере хранения под водой, радиоактивность топлива и мощность его остаточных выделений падает. Примерно через три года саморазогрев ТВС доходит уже до 50-60°С. Тогда топливо извлекают из бассейнов и отправляют на переработку или захоронение.

Металлический уран

Металлический уран используется в качестве топлива для ядерных реакторов относительно редко. Когда вещество достигает температуры 660°С, происходит фазовый переход, сопровождающийся изменением его структуры. Попросту говоря, уран увеличивается в объеме, что может привести к разрушению ТВЭЛа. В случае длительного облучения при температуре 200-500°С вещество подвергается радиационному росту. Суть этого явления заключается в удлинении облученного уранового стержня в 2-3 раза.

Применение металлического урана при температуре более 500°С затрудняется из-за его распухания. После деления ядра образуется два осколка, суммарный объем которых превышает объем того самого ядра. Часть осколков деления представлена атомами газов (ксенон, криптон и др.). Газ накапливается в порах урана и формирует внутреннее давление, которое растет по мере увеличения температуры. За счет увеличения объема атомов и повышения давления газов ядерное топливо начинает распухать. Таким образом, под этим подразумевается относительное изменение объема, связанное с делением ядер.

Сила распухания зависит от температуры ТВЭЛов и выгорания. С увеличением выгорания, возрастает количество осколков деления, а с увеличение температуры и выгорания - внутреннее давление газов. Если топливо обладает более высокими механическими качествами, то оно менее подвержено распуханию. Металлический уран к таким материалам не относится. Поэтому его применение в качестве топлива для ядерных реакторов ограничивает глубину выгорания, являющуюся одной из главных характеристик такого топлива.

Механические свойства урана и его радиационная стойкость улучшаются путем легирования материала. Это процесс предполагает добавление к нему алюминия, молибдена и других металлов. Благодаря легирующим добавкам, число нейтронов деления, необходимое на один захват, снижается. Поэтому для этих целей используются материалы, которые слабо поглощают нейтроны.

Тугоплавкие соединения

Хорошим ядерным топливом считаются некоторые тугоплавкие соединения урана: карбиды, окислы и интерметаллические соединения. Наиболее распространенным из них является диоксид урана (керамика). Его температура плавления составляет 2800°С, а плотность - 10,2 г/см 3 .

Так как у этого материала нет фазовых переходов, он менее подвержен распуханию, нежели сплавы урана. Благодаря этой особенности температуру выгорания можно повысить на несколько процентов. На высоких температурах керамика не взаимодействует с ниобием, цирконием, нержавеющей сталью и прочими материалами. Ее главный недостаток заключается в низкой теплопроводности - 4,5 кДж (м*К), ограничивающей удельную мощность реактора. Кроме того, горячая керамика склонна к растрескиванию.

Плутоний

Плутоний считается низкоплавким металлом. Он плавится при температуре 640°С. Из-за плохих пластических свойств он практически не поддается механической обработке. Токсичность вещества усложняет технологию изготовления ТВЭЛов. В атомной промышленности неоднократно предпринимались попытки использования плутония и его соединений, однако они не увенчались успехом. Использовать топливо для атомных электростанций, содержащее плутоний, нецелесообразно из-за примерно 2-кратного уменьшения периода разгона, на что не рассчитаны стандартные системы управления реакторами.

Для изготовления ядерного топлива, как правило, используют диоксид плутония, сплавы плутония с минералами, а также смесь карбидов плутония с карбидами урана. Высокими механическими свойствами и теплопроводностью обладают дисперсионные топлива, в которые частицы соединений урана и плутония размещаются в металлической матрице из молибдена, алюминия, нержавеющей стали и прочих металлов. От материала матрицы зависит радиационная стойкость и теплопроводность дисперсионного топлива. К примеру, на первой АЭС дисперсионное топливо состояло из частиц уранового сплава с 9% молибдена, которые были залиты молибденом.

Что касается ториевого топлива, то оно на сегодня не используется в силу трудностей производства и переработки ТВЭЛов.

Добыча

Значительные объемы основного сырья для ядерного топлива - урана сконцентрированы в нескольких странах: Россия, США, Франция, Канада и ЮАР. Его залежи, как правило, находятся около золота и меди, поэтому все эти материалы добывают одновременно.

Здоровье людей, работающих на разработках, подвержено большой опасности. Дело в том, что уран является токсичным материалом, и газы, выделяющиеся в процессе его добычи, могут вызывать рак. И это притом, что в руде содержится не более 1% этого вещества.

Получение

Производство ядерного топлива из урановой руды включает в себя такие стадии, как:

  1. Гидрометаллургическая переработка. Включает в себя выщелачивание, дробление и экстракционное или сорбционное извлечение. Результатом гидрометаллургической переработки является очищенная взвесь закиси оксиурана, диураната натрия или диураната аммония.
  2. Перевод вещества из оксида в тетрафторид или гексафторид, используемый для обогащения урана-235.
  3. Обогащение вещества путем центрифугирования или газовой термодиффузии.
  4. Перевод обогащенного материала в диоксид, из которого производят «таблетки» ТВЭЛов.

Регенерация

Во время работы ядерного реактора топливо не может полностью выгорать, поэтому воспроизводятся свободные изотопы. В этой связи отработанные ТВЭЛЫ подлежат регенерации с целью повторного использования.

На сегодня эту задачу решают путем пьюрекс-процесса, состоящего из таких этапов, как:

  1. Разрезание ТВЭЛов на две части и растворение их в азотной кислоте;
  2. Очистка раствора от продуктов деления и частей оболочки;
  3. Выделение чистых соединений урана и плутония.

После этого полученный диоксид плутония идет на производство новых сердечников, а уран - на обогащение или также изготовление сердечников. Переработка ядерного топлива является сложным и дорогостоящим процессом. Ее стоимость оказывает существенное влияние на экономическую целесообразность использования атомных электростанций. То же самое можно сказать и про захоронение отходов ядерного топлива, не пригодных к регенерации.

К марту 1939 года группы ученых, работавших во Франции и в Америке, доказали, что для самоподдерживающейся цепной реакции достаточно выделения в среднем двухчетырех свободных нейтронов при каждом делении уранового ядра. Растущие было опасения о возможности создания атомной бомбы, однако, быстро развеялись.

Бор решил не терять времени. Физика деления, как и любое другое новое направление в науке, несомненно, предоставляла неохватное поле для деятельности. И, поскольку в Принстоне работать можно было с не меньшим успехом, чем в Копенгагене, Бор обратился к Уилеру с предложением сотрудничества. Они занялись дальнейшей разработкой теории деления ядер, опираясь на новые экспериментальные данные. Эксперименты они проводили с аппаратом, собранным на скорую руку тут же, в Принстоне, на чердаке Палмеровской лаборатории. Полученные результаты были поначалу весьма озадачивающими.

Упомянутый выше аппарат нужен был, чтобы изучить изменения в интенсивности деления ядра урана под воздействием нейтронов, несущих каждый раз различные объемы энергии . Было установлено, что чем больше эта энергия, тем интенсивнее происходит деление, а с ее уменьшением интенсивность деления, соответственно, также снижается. Такие данные были вполне ожидаемы. Однако вскоре выяснилось, что при достаточном уменьшении энергии нейтронов интенсивность деления ядра снова возрастает.

Плачек, который ранее заставил работавшего в Копенгагене Фриша искать достоверное подтверждение ядерного расщепления, весьма неожиданно оказался в Принстоне. «Что это еще за чертовщина: почему отклик одинаковый и на быстрое и на медленное воздействие?!» - возмущался он, сидя за завтраком вместе с Розенфельдом и Бором.

Возвращаясь вскоре в свой кабинет, Нильс Бор уже знал ответ на этот вопрос. Судя по всему, причина высокой интенсивности деления ядра при малой энергии воздействующих нейтронов - редкий изотоп уран-235 (U 235), который составляет ничтожно малый процент от общего количества этого элемента, встречающегося в природе. Бор и Уилер приступили теперь к детальной разработке данной гипотезы. И в новой теории были установлены два основополагающих фактора.

В изотопе U 235 баланс между отталкивающей силой протонов в ядре атома и силой поверхностного натяжения, удерживающей ядро от распада, гораздо более хрупкий, чем в изотопе U 238 . Три дополнительных нейтрона урана-238 стабилизируют ядро и увеличивают энергетический барьер, который необходимо преодолеть, чтобы запустить реакцию распада. Следовательно, для расщепления такого ядра необходимы более быстрые нейтроны с большей энергией.

Вторым из упомянутых факторов стал непосредственно сложный состав ядра. Для него более благоприятно равное число протонов и нейтронов, что объясняется квантовой природой их субатомных составляющих. Приняв дополнительный нейтрон, U 235 превращается в U 236 , в ядре которого 92 протона и 144 нейтрона, то есть четное число обоих нуклонов. Когда U 238 принимает добавочный нейтрон, то образуется изотоп U 239 с нечетным числом нейтронов в ядре. Уран-235 «ассимилирует» дополнительный нейтрон и вступает с ним в реакцию намного проще, чем уран-238.

Совокупность двух вышеописанных факторов в достаточной степени объясняет существенное различие в поведении двух изотопов урана. Для расщепления устойчивого ядра U 238 требуются быстрые нейтроны, а гораздо менее стабильное ядро U 235 разделить можно медленными. Таким образом, если изготовить бомбу, состоящую из смеси U 235 и U 238 , действие которой будет основано на расщеплении урана-235 под воздействием медленных нейтронов, то и цепная реакция в ней будет происходить медленно. Затем она затухнет, а бомба так и не взорвется.

Теперь шансы на создание бомбы в ближайшем будущем хотя и не исчезли совсем, но значительно снизились. Конечно, нельзя забывать и о словах Бора, неоднократно повторяемых им в ходе дискуссий с коллегами в апреле 1939 года: тогда он заявил, что изготовить бомбу можно при условии, что она будет сделана на основе чистого урана-235. Однако U 235 - редкий изотоп и его доля по отношению к природному урану составляет 1:140, то есть ничтожные 0,7 %. К тому же U 235 и U 238 по химическим свойствам идентичны, и поэтому с помощью химической реакции их разделить нельзя. Это возможно только с применением специальных физических методов, позволяющих отделить изотопы друг от друга, используя практически незаметную разницу в их массе. При этом подобные работы в масштабах, необходимых для создания атомной бомбы, требовали неоправданно больших усилий - на тогдашнем уровне разработок для нее требовалось несколько тонн урана-235.

Ура́н-235 (англ. uranium-235), историческое название актиноура́н (лат. Actin Uranium, обозначается символом AcU ) - радиоактивный нуклид химического элемента урана с атомным номером 92 и массовым числом 235. Изотопная распространённость урана-235 в природе составляет 0,7200(51) %. Является родоначальником радиоактивного семейства 4n+3, называемого рядом актиния. Открыт в 1935 году Артуром Демпстером (англ. Arthur Jeffrey Dempster).

В отличие от другого, наиболее распространенного изотопа урана 238U, в 235U возможна самоподдерживающаяся цепная ядерная реакция. Поэтому этот изотоп используется как топливо в ядерных реакторах, а также в ядерном оружии.

Активность одного грамма данного нуклида составляет приблизительно 80 кБк.

  • 1 Образование и распад
  • 2 Вынужденное деление
  • 2.1 Цепная ядерная реакция
  • 3 Изомеры
  • 4 Применение
  • 5 См. также
  • 6 Примечания
  • Образование и распад

    Уран-235 образуется в результате следующих распадов:

    • β−-распад нуклида 235Pa (период полураспада составляет 24,44(11) мин):
    • K-захват, осуществляемый нуклидом 235Np (период полураспада составляет 396,1(12) дня):
    • α-распад нуклида 239Pu (период полураспада составляет 2,411(3)·104 лет):

    Распад урана-235 происходит по следующим направлениям:

    • α-распад в 231Th (вероятность 100 %, энергия распада 4 678,3(7) кэВ):
    • Спонтанное деление (вероятность 7(2)·10−9 %);
    • Кластерный распад с образованием нуклидов 20Ne, 25Ne и 28Mg (вероятности соответственно составляют 8(4)·10−10 %, 8·10−10 %, 8·10−10 %):

    Вынужденное деление

    Основная статья: Деление ядра Кривая выхода продуктов деления урана-235 для различных энергий делящих нейтронов.

    В начале 1930-х гг. Энрико Ферми проводил облучение урана нейтронами, преследуя цель получить таким образом трансурановые элементы. Но в 1939 г. О. Ган и Ф. Штрассман смогли показать, что при поглощении нейтрона ядром урана происходит вынужденная реакция деления. Как правило, ядро делится на два осколка, при этом высвобождается 2-3 нейтрона (см. схему).

    В продуктах деления урана-235 было обнаружено около 300 изотопов различных элементов: от Z=30 (цинк) до Z=64 (гадолиний). Кривая зависимости относительного выхода изотопов, образующихся при облучении урана-235 медленными нейтронами, от массового числа - симметрична и по форме напоминает букву «M». Два выраженных максимума этой кривой соответствуют массовым числам 95 и 134, а минимум приходится на диапазон массовых чисел от 110 до 125. Таким образом, деление урана на осколки равной массы (с массовыми числами 115-119) происходит с меньшей вероятностью, чем асимметричное деление, такая тенденция наблюдается у всех делящихся изотопов и не связана с какими-то индивидуальными свойствами ядер или частиц, а присуща самому механизму деления ядра. Однако асимметрия уменьшается при увеличении энергии возбуждения делящегося ядра и при энергии нейтрона более 100 МэВ распределение осколков деления по массам имеет один максимум, соответствующий симметричному делению ядра.

    Один из вариантов вынужденного деления урана-235 после поглощения нейтрона (схема)

    Осколки, образующиеся при делении ядра урана, в свою очередь являются радиоактивными, и подвергаются цепочке β−-распадов, при которых постепенно в течение длительного времени выделяется дополнительная энергия. Средняя энергия, выделяющаяся при распаде одного ядра урана-235 с учётом распада осколков, составляет приблизительно 202,5 МэВ = 3,244·10−11 Дж, или 19,54 ТДж/моль = 83,14 ТДж/кг.

    Деление ядер - лишь один из множества процессов, возможных при взаимодействии нейтронов с ядрами, именно он лежит в основе работы любого ядерного реактора.

    Цепная ядерная реакция

    Основная статья: Цепная ядерная реакция

    При распаде одного ядра 235U обычно испускается от 1 до 8 (в среднем — 2.5) свободных нейтрона. Каждый нейтрон, образовавшийся при распаде ядра 235U, при условии взаимодействия с другим ядром 235U, может вызвать новый акт распада, это явление называется цепной реакцией деления ядра.

    Гипотетически, число нейтронов второго поколения (после второго этапа распада ядер) может превышать 3² = 9. С каждым последующим этапом реакции деления количество образующихся нейтронов может нарастать лавинообразно. В реальных условиях свободные нейтроны могут не порождать новый акт деления, покидая образец до захвата 235U, или будучи захваченными как самим изотопом 235U с превращением его в 236U, так и иными материалами (например, 238U, или образовавшимися осколками деления ядер, такими как 149Sm или 135Xe).

    Если в среднем каждый акт деления порождает еще один новый акт деления, то реакция становится самоподдерживающейся; это состояние называется критическим. (см. также Коэффициент размножения нейтронов)

    В реальных условиях достичь критического состояния урана не так просто, поскольку на протекание реакции влияет ряд факторов. Например, природный уран лишь на 0,72 % состоит из 235U, 99,2745 % составляет 238U, который поглощает нейтроны, образующиеся при делении ядер 235U. Это приводит к тому, что в природном уране в настоящее время цепная реакция деления очень быстро затухает. Осуществить незатухающую цепную реакцию деления можно несколькими основными путями:

    • Увеличить объём образца (для выделенного из руды урана возможно достижение критической массы за счёт увеличения объёма);
    • Осуществить разделение изотопов, повысив концентрацию 235U в образце;
    • Уменьшить потерю свободных нейтронов через поверхность образца с помощью применения различного рода отражателей;
    • Использовать вещество — замедлитель нейтронов для повышения концентрации тепловых нейтронов.

    Изомеры

    Известен единственный изомер 235Um со следующими характеристиками:

    • Избыток массы: 40 920,6(1,8) кэВ
    • Энергия возбуждения: 76,5(4) эВ
    • Период полураспада: 26 мин
    • Спин и чётность ядра: 1/2+

    Распад изомерного состояния осуществляется путём изомерного перехода в основное состояние.

    Применение

    • Уран-235 используется в качестве топлива для ядерных реакторов, в которых осуществляется управляемая цепная ядерная реакция деления;
    • Уран с высокой степенью обогащения применяется для создания ядерного оружия. В этом случае для высвобождения большого количества энергии (взрыва) используется неуправляемая цепная ядерная реакция.

    См. также

    • Изотопы урана
    • Разделение изотопов

    Примечания

    1. 12345 G. Audi, A.H. Wapstra, and C. Thibault (2003). «The AME2003 atomic mass evaluation (II). Tables, graphs, and references.». Nuclear Physics A 729 : 337-676. DOI:10.1016/j.nuclphysa.2003.11.003. Bibcode: 2003NuPhA.729..337A.
    2. 123456789101112 G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra (2003). «The NUBASE evaluation of nuclear and decay properties». Nuclear Physics A 729 : 3–128. DOI:10.1016/j.nuclphysa.2003.11.001. Bibcode: 2003NuPhA.729….3A.
    3. Гофман К. Можно ли сделать золото? - 2-е изд. стер. - Л.: Химия, 1987. - С. 130. - 232 с. - 50 000 экз.
    4. Today in science history
    5. 123 Фиалков Ю. Я. Применение изотопов в химии и химической промышленности. - Киев: Техніка, 1975. - С. 87. - 240 с. - 2 000 экз.
    6. Table of Physical and Chemical Constants, Sec 4.7.1: Nuclear Fission. Kaye & Laby Online. Архивировано из первоисточника 8 апреля 2012.
    7. Бартоломей Г. Г., Байбаков В. Д., Алхутов М. С., Бать Г. А. Основы теории и методы расчета ядерных энергетических реакторов. - М.: Энергоатомиздат, 1982. - С. 512.

    Уран-235 Информация о

    Уран-235
    Уран-235

    Уран-235 Информация Видео


    Уран-235 Просмотр темы.
    Уран-235 что, Уран-235 кто, Уран-235 объяснение

    There are excerpts from wikipedia on this article and video

    Уран представляет собой радиоактивный металл. В природе уран состоит из трех изотопов: уран-238, уран-235 и уран-234. Наивысший уровень стабильности фиксируется у урана-238.

    ХарактеристикаЗначение
    Общие сведения
    Название, символ Уран-238, 238U
    Альтернативные названия ура́н оди́н, UI
    Нейтронов 146
    Протонов 92
    Свойства нуклида
    Атомная масса 238,0507882(20) а. е. м.
    Избыток массы 47 308,9(19) кэВ
    Удельная энергия связи (на нуклон) 7 570,120(8) кэВ
    Изотопная распространённость 99,2745(106) %
    Период полураспада 4,468(3)·109 лет
    Продукты распада 234Th, 238Pu
    Родительские изотопы 238Pa (β−)
    242Pu (α)
    Спин и чётность ядра 0+
    Канал распада Энергия распада
    α-распад 4,2697(29) МэВ
    SF
    ββ 1,1442(12) МэВ

    Радиоактивный распад урана

    Радиоакти́вным распа́дом называют процесс внезапного изменения состава или внутреннего строения атомных ядер, которые отличаются нестабильностью. При этом испускаются элементарные частицы, гамма-кванты и/или ядерные фрагменты. Радиоактивные вещества содержат радиоактивное ядро. Получившееся вследствие радиоактивного распада дочернее ядро может тоже стать радиоактивным и спустя определенное время подвергается распаду. Этот процесс происходит до того момента, пока не образуется стабильное ядро, лишенное радиоактивности. Э. Резерфорд методом эксперимента в 1899 доказал, что урановые соли испускают три вида лучей:

    • α-лучи — поток положительно заряженных частиц
    • β-лучи — поток отрицательно заряженных частиц
    • γ-лучи — не создают отклонений в магнитном поле.
    Вид излученияНуклидПериод полураспада
    Ο Уран — 238 U 4,47 млрд. лет
    α ↓
    Ο Торий — 234 Th 24.1 суток
    β ↓
    Ο Протактиний — 234 Pa 1.17 минут
    β ↓
    Ο Уран — 234 U 245000 лет
    α ↓
    Ο Торий — 230 Th 8000 лет
    α ↓
    Ο Радий — 226 Ra 1600 лет
    α ↓
    Ο Полоний — 218 Po 3,05 минут
    α ↓
    Ο Свинец — 214 Pb 26,8 минут
    β ↓
    Ο Висмут — 214 Bi 19,7 минут
    β ↓
    Ο Полоний — 214 Po 0,000161 секунд
    α ↓
    Ο Свинец — 210 Pb 22,3 лет
    β ↓
    Ο Висмут — 210 Bi 5,01 суток
    β ↓
    Ο Полоний — 210 Po 138,4 суток
    α ↓
    Ο Свинец — 206 Pb стабильный

    Радиоактивность урана

    Естественная радиоактивность - вот что отличает радиоактивный уран от прочих элементов. Атомы урана не зависимо ни от каких факторов и условий постепенно изменяются.

    Уран (элемент)

    При этом испускаются невидимые лучи. После трансформаций, которые происходят с атомами урана, получается иной радиоактивный элемент и процесс повторяется. Он будет повторять столько раз, сколько необходимо, чтобы получился не радиоактивный элемент. К примеру, некоторые цепочки превращений насчитывают до 14 стадий. При этом промежуточным элементом является радий, а последняя стадия - образование свинца. Этот металл не является радиоактивным элементом, поэтому ряд превращений прерывается. Однако для полного превращения урана в свинец необходимо несколько миллиардов лет.
    Радиоактивная руда урана часто становится причиной отравлений на предприятиях, занимающихся добычей и переработкой уранового сырья. В человеческом организме уран — общеклеточный яд. Он поражает главным образом почки, но встречаются и поражения печени и желудочно-кишечного тракта.
    Уран не имеет полностью стабильных изотопов. Наибольший период жизни отмечается у урана-238. Полу распад урана-238 происходит на протяжении 4,4 млрд лет. Чуть меньше одного миллиарда лет идет полу распад урана-235 — 0,7 млрд лет. Уран-238 занимает свыше 99% всего объема природного урана. Вследствие его колоссального периода полураспада радиоактивность этого металла не высокая, к примеру, альфа-частицы не могут проникнуть через ороговевший слой кожи человека. После ряда проведенных исследований ученые выяснили, что главным источником радиации является не сам уран, а образуемый им газ радон, а также продукты его распада, попадающие в человеческий организм во время дыхания.

    радиоактивный уран, радиоактивность, радиоактивный распад

    Изотопы и получение урана

    Природный уран состоит из смеси трёх изотопов: 238U- 99,2739 % (период полураспада T 1/2 = 4,468×109 лет), 235U - 0,7024 % (T 1/2 = 7,038×108 лет) и 234U - 0,0057 % (T 1/2 = 2,455×105 лет). Последний изотоп является не первичным, а радиогенным, он входит в состав радиоактивного ряда 238U.

    Радиоактивность природного урана обусловлена в основном изотопами 238U и 234U, в равновесии их удельные активности равны. Удельная активность изотопа 235U в природном уране в 21 раз меньше активности 238U.

    Известно 11 искусственных радиоактивных изотопов урана с массовыми числами от 227 до 240. Наиболее долгоживущий из них - 233U (T 1/2 = 1,62×105лет) получается при облучении ториянейтронами и способен к спонтанному делению тепловыми нейтронами.

    Изотопы урана 238U и 235U являются родоначальниками двух радиоактивных рядов. Конечными элементами этих рядов являются изотопы свинца206Pb и 207Pb.

    В природных условиях распространены в основном изотопы 234U: 235U: 238U = 0,0054: 0,711: 99,283. Половина радиоактивности природного урана обусловлена изотопом 234U. Изотоп 234U образуется за счёт распада 238U. Для двух последних в отличие от других пар изотопов и независимо от высокой миграционной способности урана характерно географическое постоянство отношенияU238/U235=137,88. Величина этого отношения зависит от возраста урана. Многочисленные натурные измерения показали его незначительные колебания. Так в роллах величина этого отношения относительно эталона изменяется в пределах 0,9959 −1,0042, в солях - 0,996 - 1,005. В урансодержащих минералах (настуран, урановая чернь, циртолит, редкоземельные руды) величина этого отношения колеблется в пределах 137,30 - 138,51; причём различие между формами UIV и UVI не установлено; в сфене - 138,4. В отдельных метеоритах выявлен недостаток изотопа 235U. Наименьшая его концентрация в земных условиях найдена в 1972 г. французским исследователем Бужигесом в местечке Окло в Африке(месторождение в Габоне). Так в нормальном уране содержится 0,7025 % урана 235U, тогда как в Окло оно уменьшаются до 0,557 %. Это послужило подтверждением гипотезы о наличии природного ядерного реактора, ведущего к выгоранию изотопа, предсказанной Джордж Ветрилл (George W. Wetherill) из Калифорнийского университета в ЛосАнджелесе и Марк Ингрэмом (Mark G. Inghram) из Чикагского университета и Полом Курода (Paul K. Kuroda), химиком из Университета Арканзаса, ещё в 1956 г. описавшим процесс. Кроме этого, в этих же округах найдены природные ядерные реакторы: Окелобондо, Бангомбе (Bangombe) и др. В настоящее время известно около 17 природных ядерных реакторов.

    Получение

    Самая первая стадия уранового производства - концентрирование. Породу дробят и смешивают с водой. Тяжёлые компоненты взвеси осаждаются быстрее. Если порода содержит первичные минералы урана, то они осаждаются быстро: это тяжёлые минералы. Вторичные минералы урана легче, в этом случае раньше оседает тяжёлая пустая порода. (Впрочем, далеко не всегда она действительно пустая; в ней могут быть многие полезные элементы, в том числе и уран).

    Следующая стадия - выщелачивание концентратов, перевод урана в раствор. Применяют кислотное и щелочное выщелачивание. Первое - дешевле, поскольку для извлечения урана используют серную кислоту. Но если в исходном сырье, как, например, в урановой смолке , уран находится в четырёхвалентном состоянии, то этот способ неприменим: четырёхвалентный уран в серной кислоте практически не растворяется. В этом случае нужно либо прибегнуть к щелочному выщелачиванию, либо предварительно окислять уран до шестивалентного состояния.

    Не применяют кислотное выщелачивание и в тех случаях, если урановый концентрат содержит доломит или магнезит, реагирующие с серной кислотой.

    В этих случаях пользуются едким натром (гидроксидомнатрия).

    Проблему выщелачивания урана из руд решает кислородная продувка. В нагретую до 150 °C смесь урановой руды с сульфидными минералами подают поток кислорода. При этом из сернистых минералов образуется серная кислота, которая и вымывает уран.

    На следующем этапе из полученного раствора нужно избирательно выделить уран. Современные методы - экстракция и ионный обмен - позволяют решить эту проблему.

    Раствор содержит не только уран, но и другие катионы. Некоторые из них в определённых условиях ведут себя так же, как уран: экстрагируются теми же органическими растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. Поэтому для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, чтобы на каждой стадии избавляться от того или иного нежелательного попутчика. На современных ионообменных смолах уран выделяется весьма селективно.

    Методы ионного обмена и экстракции хороши ещё и тем, что позволяют достаточно полно извлекать уран из бедных растворов (содержание урана - десятые доли грамма на литр).

    После этих операций уран переводят в твёрдое состояние - в один из оксидов или в тетрафторид UF4. Но этот уран ещё надо очистить от примесей с большим сечением захвата тепловых нейтронов - бора, кадмия, гафния. Их содержание в конечном продукте не должно превышать стотысячных и миллионных долей процента. Для удаления этих примесей технически чистое соединение урана растворяют в азотной кислоте. При этом образуется уранилнитрат UO2(NO3)2, который при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают пероксид UO4·2H2O) и начинают осторожно прокаливать. В результате этой операции образуется трёхокись урана UO3, которую восстанавливают водородом до UO2.

    На диоксид урана UO2 при температуре от 430 до 600 °C воздействуют сухим фтористым водородом для получения тетрафторида UF4. Из этого соединения восстанавливают металлический уран с помощью кальция или магния.

    Обеднённый уран

    После извлечения 235U и 234U из природного урана, оставшийся материал (уран-238) носит название «обеднённый уран», так как он обеднён 235-м изотопом. По некоторым данным, в США хранится около 560 000 тонн обеднённого гексафторида урана (UF6).

    Обеднённый уран в два раза менее радиоактивен, чем природный уран, в основном за счёт удаления из него 234U. Из-за того, что основное использование урана - производство энергии, обеднённый уран - малополезный продукт с низкой экономической ценностью.

    В основном его использование связано с большой плотностью урана и относительно низкой его стоимостью. Обеднённый уран используется для радиационной защиты (как это ни странно) и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. В каждом самолёте «Боинг-747» содержится 1500 кг обеднённого урана для этих целей. Ещё этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, при бурении нефтяных скважин.

    Физиологическое действие

    В микроколичествах (10−5-10−8 %) обнаруживается в тканях растений, животных и человека. В наибольшей степени накапливается некоторыми грибами и водорослями. Соединения урана всасываются в желудочно-кишечном тракте (около 1 %), в легких - 50 %. Основные депо в организме: селезёнка, почки, скелет, печень, лёгкие и бронхо-лёгочные лимфатические узлы. Содержание в органах и тканях человека и животных не превышает 10−7г.

    Уран и его соединения токсичны. Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана ПДК в воздухе 0,015 мг/м³, для нерастворимых форм урана ПДК 0,075 мг/м³. При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Уран практически необратимо, как и многие другие тяжелые металлы, связывается с белками, прежде всего, с сульфидными группами аминокислот, нарушая их функцию. Молекулярный механизм действия урана связан с его способностью подавлять активность ферментов. В первую очередь поражаются почки (появляются белок и сахар в моче, олигурия). При хронической интоксикации возможны нарушения кроветворения и нервной системы.

    Добыча урана в мире

    10 стран, ответственных за 94 % мировой добычи урана

    Согласно «Красной книге по урану», выпущенной ОЭСР, в 2005 добыто 41 250 тонн урана (в 2003 - 35 492 тонны). Согласно данным ОЭСР, в мире функционирует 440 реакторов коммерческого назначения, которые потребляют в год 67 тыс. тонн урана. Это означает, что его производство обеспечивает лишь 60 % объёма его потребления (остальное извлекается из старых ядерных боеголовок). Добыча по странам в тоннах по содержанию U на 2005-2006 гг. (смотреть таблицу № 13, приложение А).

    Добыча в России

    В СССР основными уранорудными регионами были Украина (месторождение Желтореченское, Первомайское и др.), Казахстан (Северный - Балкашинское рудное поле и др.; Южный - Кызылсайское рудное поле и др.; Восточный; все они принадлежат преимущественно вулканогенно -гидротермальному типу); Забайкалье (Антей, Стрельцовское и др.); Средняя Азия, в основном Узбекистан с оруденениями в чёрных сланцах с центром в г. Учкудук. Имеется масса мелких рудопроявлений и проявлений. В России основным урановорудным регионом осталось Забайкалье. На месторождении в Читинской области (около города Краснокаменск) добывается около 93 % российского урана. Добычу осуществляет шахтным способом «Приаргунское производственное горно-химическое объединение» (ППГХО), входящее в состав ОАО «Атомредметзолото» (Урановый холдинг).

    Остальные 7 % получают методом подземного выщелачивания ЗАО «Далур» (Курганская область) и ОАО «Хиагда» (Бурятия).

    Полученные руды и урановый концентрат перерабатываются на Чепецком механическом заводе.

    Добыча в Казахстане

    В Казахстане сосредоточена примерно пятая часть мировых запасов урана (21% и 2 место в мире). Общие ресурсы урана порядка 1,5 млн. тонн, из них около 1,1 млн. тонн можно добывать методом подземного выщелачивания.

    В 2009 году Казахстан вышел на первое место в мире по добыче урана (добыто 13 500 тонн).

    Добыча на Украине

    Основное предприятие - Восточный горно-обогатительный комбинат в городе Жёлтые Воды.

    Применение

    Хотя уран-238 не может быть использован как первичный делящийся материал, из-за высокой энергии нейтронов, необходимых для его деления, он занимает важное место в ядерной отрасли.

    Имея высокую плотность и атомный вес, U-238 пригоден для изготовления из него оболочек заряда рефлектора в устройствах синтеза и деления. Тот факт, что он делится быстрыми нейтронами, увеличивает энерговыход заряда: косвенно, размножением отраженных нейтронов; непосредственно при делении ядер оболочки быстрыми нейтронами (при синтезе). Примерно 40% нейтронов, образованных при делении и все нейтроны синтеза обладают достаточными для деления U-238 энергиями.

    U-238 имеет интенсивность спонтанного деления в 35 раз более высокую, чем U-235, 5.51 делений/с*кг. Это делает невозможным применение его в качестве оболочки заряда рефлектора в пушечных бомбах, ибо подходящая его масса (200-300 кг) создаст слишком высокий нейтронный фон.

    Чистый U-238 имеет удельную радиоактивность 0.333 микрокюри/г.

    Важная область применения этого изотопа урана — производство плутония-239. Плутоний образуется в ходе нескольких реакций, начинающихся после захвата атомом U-238 нейтрона. Любое реакторное топливо, содержащее природный или частично обогащенный по 235-му изотопу уран, после окончания топливного цикла содержит в себе определенную долю плутония.

    Цепочка распада урана-238

    Изотоп уран–238, его в природном уране больше, чем 99 %. Этот изотоп является и самым устойчивым, тепловыми нейтронами его ядро расщепить нельзя. Для того, чтобы разделить 238U, нейтрону нужна дополнительная кинетическая энергия 1.4 МэВ. Ядерный реактор из чистого урана–238 ни при каких условиях работать не будет.

    Атом урана-238, в ядре которого протоны и нейтроны едва удерживаются вместе силами сцепления. Время от времени из него вырывается компактная группа из четырех частиц: двух протонов и двух нейтронов (α-частица). Уран-238 превращается, таким образом, в торий-234, в ядре которого содержатся 90 протонов и 144 нейтрона. Но торий-234 также нестабилен. Его превращение происходит, однако, не так, как в предыдущем случае: один из его нейтронов превращается в протон, и торий-234 превращается в протактиний-234, в ядре которого содержатся 91 протон и 143 нейтрона. Эта метаморфоза, произошедшая в ядре, сказывается и на движущихся по своим орбитам электронах: один из них становится неспаренным и вылетает из атома. Протактиний очень нестабилен, и ему требуется совсем немного времени на превращение. Далее следуют иные превращения, сопровождаемые излучениями, и вся эта цепочка, в конце концов, оканчивается стабильным нуклидом свинца (смотреть рисунок № 7, приложение Б).

    Важнейшим обстоятельством для ядерной энергетики оказывается то, что наиболее распространённый изотоп урана238U тоже является потенциальным источником ядерного горючего. И Сциллард, и Ферми были правы, предполагая, что поглощение нейтронов ураном приведёт к образованию новых элементов.

    Изотопы урана

    Действительно, при столкновении с тепловым нейтроном уран-238 не делится, вместо этого ядро поглощает нейтрон. В среднем за 23.5 минуты один из нейтронов в ядре превращается в протон (с вылетом электрона, реакция β — распада), и ядроурана-239 становится ядром нептуния-239 (239Np). Через 2.4 суток происходит второй β — распад и образуется плутоний-239 (239Pu).

    В результате последовательного поглощения нейтронов в ядерном реакторе могут быть наработаны элементы ещё более тяжёлые, чем плутоний.

    В природных минералах и урановой руде обнаруживались только микроколичества 239Pu, 244Pu и 237Np, так что в естественной среде трансурановые элементы (более тяжёлые, чем уран), практически не встречаются.

    Изотопы урана, существующие в природе, не совсем стабильны по отношению к α-распаду и спонтанному делению, однако распадаются очень медленно: период полураспада урана-238 равен 4.5 миллиардам лет, а урана-235 – 710 миллионам лет. Из-за малой частоты ядерных реакций такие долгоживущие изотопы не являются опасными источниками радиации. Слиток природного урана можно держать в руках без вреда для здоровья. Его удельная активность равна 0.67 мКи/кг (Ки – кюри, внесистемная единица активности, равная 3.7*1010распадов за секунду).

    Получение — уран

    Cтраница 1

    Получение урана из золы отечественного угля — писала газета — можно считать разрешенным вопросом. В 1 т золы некоторых углей содержится атомная энергия, эквивалентная 6 тыс. т угля.  

    Получение урана, золота; разделение продуктов расщепления урана; получение цветных металлов и редкоземельных элементов.  

    Получению урана и тория предшествует сложная комплексная переработка рудного сырья.  

    Для получения урана твердый UF4 восстанавливают кальцием или магнием.  

    Применяется для получения урана, тория и других металлов, а также в органическом синтезе.  

    Энергозатраты на получение урана идеальной закалки реакционной смеси составляют 71 эВ на атом металла.  

    Главным источником получения урана служит минерал уранинит и его разновидности — смоляная обманка, урановые слюдки, настуран, урановая чернь. Большое значение для получения урана и его соединений имеют урано-ванадиевые, урано-фосфорные, урано-мышьяково-кислые соли кальция, меди, бария, получившие название урановых слюдок.  

    В последние годы для получения урана применяют подземное выщелачивание с последующей очисткой растворов. Для подземного выщелачивания применяют серную кислоту и карбонатные растворы.

    Другим крупным потенциальным источником получения урана в США являются сланцы, залегающие на территории штатов Теннесси, Кентукки, Индиана, Иллинойс и Огайо.  

    Известно много других способов получения четы-рехфтористого урана, в том числе реакция взаимодействия фтористого водорода с компактным металлическим ураном в атмосфере водорода, начинающаяся при 250 С.  

    Методики расчета тигельных печей для получения урана практически не существует. При конструировании их можно лишь учесть такие факторы, как количества тепла, выделяемого по реакции и теряемого в окружающее пространство, а также (в случае магниетермического восстановления) количество тепла, которое необходимо подводить с помощью внешних нагревателей.  

    В Японии разработана новая технология получения урана из раствора фосфорной кислоты, используемой для производства фосфорных удобрений. До сооружения завода по извлечению урана из 3 — 4 млн. т фосфатов, импортируемых ежегодно Японией в качестве сырья для производства удобрений, предполагается сооружение опытной установки.  

    Следует подчеркнуть, что процесс получения урана не так прост, как он здесь описан. Следует помнить, что все процессы проводятся в сложной аппаратуре, изготовленной из специальных материалов. При этом должна соблюдаться очень точная дозировка реагентов и поддерживаться необходимая температура. Процесс производства урана требзтет большого количества исключительно чистых реактивов, которые должны быть чище, чем так называемые химически чистые вещества.  

    Страницы:      1    2    3    4

    Как это часто к сожалению бывает, полезные изобретения часто используют и для дурных целей. Это относится и к использованию цепной реакции деления. Борьба с распространением атомного оружия идет с переменным успехом. Наибольшую опасность представляет обладание атомным оружием у авторитарных режимов и, тем более у террористов. Рассмотрим различные типы атомных бомб и опасности, связанные с возможностью распространения технологий их производства.

    Бомба из урана-235

    Атомную бомбу можно изготовить из U-235, Pu-239 и U-233. Из них только U-235 существует в природе. Pu-239 и U-233 получаются бомбардировкой других изотопов нейтронами.
    Проще всего можно изготовить атомную бомбу из урана. Для этого не надо реактора. Например, для этого нужно иметь необходимое количество природного урана, газовые центрифуги. Уран переводится в газообразное состояние − гексафторид урана UF 6 , который пропускается через центрифуги. Степень разделения определяется количеством отдельных центрифуг, собранных в каскад. "Немного" терпения, и у вас оружейный уран (>90% 235 U). Для того, чтобы создать урановую бомбу без плутония) необходимо около 15-20 кг оружейного урана.
    Однако, хотя в принципе процесс обогащения урана известен, для того, чтобы получить достаточное количество высокообогащенного урана требуется сырье, квалификация, инфраструктура и большое количество энергии. Так что даже получение высокообогащенного урана террористами весьма маловероятно. Скорее всего, его постараются просто украсть. Таким образом, страны, обладающие запасами оружейного урана должны строго следить за своими хранилищами. Наработка оружейного урана посильна только странам с достаточно развитой технологической базой.
    Кроме того из обогащенного урана надо еще изготовить бомбу. Наиболее примитивная атомная бомба − так называемая бомба " пушечного" типа.

    Бомба "пушечного" типа
    Бомба "пушечного" типа проста по конструкции. В ней один "кусок" U-235 "выстреливается с помощью соответствующего заряда в другой "кусок", при этомобразуется критическая масса. В результате возникает цепная реакция. Такая бомба неэффективно использует делящийся материал; только 1.4% высокообогащенного урана в бомбе этого типа разделилась. Таую бомбу сбросили на Хиросиму. Она слишком велика для ракеты однако может быть доставлена, например, на самолете.

    Бомба из плутония-239

    Плутонии является побочным продуктом всех реакторов. Однако, для того, чтобы его использовать как делящийся материал, его надо химически очистить от остатков высокоактивных отходов. Это дорогостоящий и опасный процесс, требующий специальных знаний и оборудования.

    Плутоний образуется в ядерном реакторе при бомбардировке U-238 тепловыми нейтронами

    Для производства ядерного оружия используется Pu-239. Сечения деления и рассеяния, а также количество нейтронов при делении у Pu-239 больше, чем у U-235 и, соответственно меньшая критическая масса, т.е. для реализации самоподдерживающейся реакции деления плутония надо меньше, чем урана. Для плутониевой атомной бомбы обычно необходимо 3-5 кг Pu-239.
    Из-за относительно небольшого периода полураспада (в сравнении с U-235), Pu-239 из-за испускаемого им излучения заметно нагревается. Тепловыделение Pu-239 - 1.92 Вт/кг. Так, хорошо изолированный кусок плутония за два часа нагревается от комнатной температуры до 100 о. Это, естественно, создает трудности при конструировании бомбы. Физические свойства плутония таковы, что в бомбе пушечного типа не удается достаточно быстро соединить два куска плутония, чтобы образовать критическую массу. Для плутония нужно применять более сложную схему.

    Бомба имплозионного типа
    В центре бомбы имплозионного типа находится плутоний высокообогащенный уран или их смесь. Направленный внутрь на плутониевый кор взрыв реализуется с помощью системы специальных линз, которые срабатывают одновременно. Плутоний сильно и равномерно сжимается. Масса становится критической. Однако, простое сжатие плутония до критической массы еще не гарантирует начала цепной реакции. Для этого необходимы нейтроны от нейтронного источника, который располагается в центре устройства и одновременно со сжатием облучает плутоний.
    Плутоний экстрагируемый из облученного топлива и снова используемый в реакторе становится все менее пригодным для производства оружия из-за увеличения в нем доли Pu-238, Pu-240 и Pu-242.
    Основная вредная примесь для оружейного плутония − Pu-240 из-за его высокой скорости спонтанного деления. Она больше, чем у Pu-239 в 30000 раз. Всего 1% Pu-240 в смеси производит такое количество нейтронов, что в имплозионной системе возможен взрыв. Наличие последнего в больших пропорциях существенно осложняет задачу проектирования надежного боезаряда с заданными характеристиками (номинальная мощность, безопасность при длительном хранении и т. д.)
    Оружейный плутоний, характеризуется весьма высоким (свыше 90 %) содержанием делящегося изотопа 239 Pu и малым содержанием изотопа 240 Pu (до ~5 %).
    «Гражданский» плутоний, выделяемый при переработке (репроцессинге) отработавшего топлива ядерных реакторов АЭС и характеризующийся средним соотношением содержания изотопов 239 (60 %) и 240 (40 %). Использование «гражданского» плутония для изготовления ядерных боезарядов в принципе возможно.

    Бомба из урана-233

    В странах, где мало урана, но много тория (например Индия), представляет интерес получения делящегося изотопа U-233 с помощью цепочки реакций:

    Как взрывчатый материал 233 U почти так же эффективен как 239 Pu. Осложняет ситуацию в военном применении 233 U примеси 232 U, дочерние продукты которого, являются сильными гамма-источниками, что осложняет работу с ним.
    232 U образуется в результате реакции.

    Сосредоточение усилий на производстве плутония дало мощный успех, но то, что Берия не успевал уделить достаточно личного внимания получению урана-235, сказывалось – дело на этом направлении шло плохо. Очень плохо!

    Стоял сентябрь 1949 года, еще и месяца не прошло после успешного испытания первой советской атомной бомбы, а Берия в своем кремлевском кабинете выслушивал доклад сотрудника, вернувшегося из командировки на уральский комбинат – тот самый, который был построен для разделения изотопов урана.

    – Я считаю, что положение на комбинате 813 уже нельзя назвать кризисным, – докладывал сотрудник. – Они почти год не могут ввести в эксплуатацию завод диффузионного разделения урана. Там многие работники, в том числе и руководители, просто отчаялись, работают механически, не веря в успех. Это не кризис, это напоминает агонию.

    Берия долго и задумчиво молчал, потом снял телефонную трубку и дал команду.

    – К вечеру подготовьте мне вагон, я выезжаю на Урал.

    Берия прошелся по заводу Д-1 комбината 813 – по заводу, на котором в специальных машинах путем диффузии гексафторида изотопов урана должен был выделяться из смеси изотопов изотоп урана-235.

    Затем собрал совещание, на котором присутствовало около сотни специалистов, как самого комбината, так и поставщиков оборудования, и представителей науки.

    Когда подчиненные паникуют, руководитель обязан оставаться спокойным. И чем больше паникуют подчиненные, тем более спокойным должен быть руководитель, иначе любая его горячность будет воспринята подчиненными и за его панику, и тогда их собственная паника и отчаяние будут неконтролируемы. Всем своим спокойным и даже несколько безразличным видом руководитель должен пока зывать, что «мы и из худших выбирались передряг», и что нужно лишь немного усилить нажим, еще чуть-чуть пошевелить мозгами, и дело будет сделано.

    – В целом я знаком с проблемами вашего завода, – спокойно начал Берия, – но хотел бы сейчас услышать их из ваших уст. Давайте начнем с самого младшего по должности, а закончим директором завода.

    Сначала, как водится, народ стесняется начальства, особенно большого, но такая обязанность говорить – начиная с младшего, – снимает стеснительность, и люди выкладывают все, что знают.

    То, что Берия услышал на совещании, наряду с увиденным в цехах, в сумме дало достаточно безрадостную картину.

    На газоразделительном заводе Д-1 сразу же после пус¬ коналадочных работ на первых введенных в эксплуатацию каскадах, состоящих в основном из диффузионных машин ЛБ-7, начались массовые выходы из строя машин, работающих на рабочем газе (гексафториде урана). В дальнейшем это повторилось и на машинах ЛБ-8 и ЛБ-9. Причины аварий – заедание шариковых подшипников электропривода компрессора, приводящее либо сразу к его остановке, либо к быстрому износу подшипников, сопровождаемому недопустимой вибрацией компрессора. А ведь это были специальные, высокооборотные подшипники, которые должны были служить десятки тысяч часов, но реально они выходили из строя через несколько сотен часов работы, а некоторые нормально вращались только несколько десятков часов.

    И на заводе Д-1 за сутки выходило из строя до 50 компрессоров, а это было больше, чем можно было смонтировать новых машин. Это была мучительная работа, не прерывавшаяся ни днем, ни ночью – замена вышедших из строя многотонных компрессоров новыми или отремонтированными машинами! Ведь все машины до их аварийной остановки были заполнены рабочим газом – химически агрессивным радиоактивным гексафторидом урана, уже успевшим получить некоторое изменение в своем изотопном составе.

    Было непонятно, почему изготовленные по первому классу точности шариковые подшипники, прошедшие специальный отбор, выходят из строя? При заводских и комиссионных приемных испытаниях ведь все было в порядке.

    Стали искать причину в недостатках сборки, в отклонениях требований к механической обработке, а выход из строя подшипников с вводом в эксплуатацию новых и новых каскадов нарастал и нарастал.

    Ремонт машин был очень трудным. Из-за одного вышедшего из строя компрессора приходилось останавливать и отключать от каскада целый блок из 12 машин, откачивать из него рабочий газ, снимать с места и транспортировать в цех ревизии аварийную машину, обнажая при этом весьма чувствительные к влаге и коррозии пакеты пористых пластин, установленных в баке-делителе. Вместо изъятых машин монтировались новые или уже отремонтированные машины, повторяя весь цикл монтажа снова и снова (откачка, проверка на вакуумную плотность, наполнение газом и т.п.). И опять без уверенности, что замененная машина долго проработает. Эта трудоемкая изнурительная работа полностью дезорганизовала пуск завода Д-1 и была настоящим бедствием, что вызвало у некоторых руководителей неверие в успех промышленного освоения диффузионного метода.

    Была и вторая беда, еще более тяжкая – был обнаружен недопустимо высокий уровень коррозии (разложения) рабочего газа (гексафторида урана) в машинах. Это приводило к тому, что поток высокообогащенного газа конечных каскадов практически не достигал, так как гексафторид урана разлагался, значительная часть его потока превращалась в порошок (тетрафторид урана) и осаждалась на внутренних стенках машин.

    Процессы коррозии особенно сильно ускорял влажный воздух, засасываемый из атмосферы в вакуумный объем машин и коммуникаций. Он проникал в машины при недостаточной герметичности фланцевых разъемов, которых было на заводе несколько десятков тысяч. А поскольку для ремонта аварийных машин надо было останавливать и вскрывать блоки или каскады, то избавиться от напуска влажного воздуха практически было невозможно.

    К проблемам добавлялись сомнения в достаточной герметичности многочисленных тонкостенных труб разъемных газовых коммуникаций, имевших приварные фланцы. Общая протяженность их на заводе Д-1 достигала несколько километров.

    Берия записывал ключевые вопросы в блокнот, пытаясь отобрать из них наиглавнейшие и отсеять мелочь, которая будет решена и без него.

    Особенно не понравилось ему итоговые выступления главного инженера и директора. Дело в том, что вначале на эти должности были назначены молодые инженеры, но перед пуском Берия, опасаясь, что молодые завалят его вопросами, заменил их на опытных. И ошибся! Эти опытные специалисты потеряли необходимый энтузиазм и теперь скорее имитировали привычную работу, а не штурмовали проблемы.

    Оба они закончили свои выступления примерно одинаково:

    «Мы считаем, что с таким составом оборудования завод работать не будет», – а ведь знали, что другого оборудования просто не существует!

    – Хорошо, – сказал Берия, никак не прореагировав на выводы руководителей завода. – Теперь прошу высказаться о том, как ликвидировать недостатки. Представители Горь¬ ковского машзавода. Ваши машины ЛБ не работают. Начинайте с подшипников. Нашли причины их заклинивания?

    – Это нашли, – сообщил горьковчанин. – Мы же артиллеристы, поэтому стремились к точности. Поставили очень точные подшипники, сделали очень точные посадки.

    В результате роторы не имели люфтов. А при работе возникает неравномерный нагрев и неравномерное термическое расширение. Подшипник перекашивает и заклинивает.

    – М-да. Всю жизнь нас, русских, критиковали за отсутствие точности, теперь мы точности добились, и снова нехорошо!

    Продолжайте.

    – Как это устранить – понятно. Прослабим подшипники и посадки, добьемся люфта. С коррозией гексафтори¬ да урана дело сложнее…

    И так, выслушивая специалиста за специалистом, Берия выяснял, какие пути решения проблем уже найдены, а какие проблемы остаются без решения.

    – Да, – вспомнил он в конце, – у нас еще есть выездная бригада ученых-физиков из Москвы. Что вы скажете?

    – Товарищ Берия! – бодро начал физик. – Сначала я скажу в принципе, а потом зачту список наших предложений.

    Дело в том, что из-за низкой, так сказать, научной и культурной подготовленности персонала завода, из-за низкой его дисциплины предлагаемые нами научные рекомендации не исполняются. Вот они…

    – Читать список не надо, ситуация понятна и слушать эти рекомендации нет необходимости, оборвал выступающего Берия, поняв, что наука, как обычно, старается держаться отдельно от заводчан и, следовательно от их проблем.

    – Давайте переходить к решениям, – Берия немного помолчал в задумчивости. – Начнем с директора. Преступно поручать бой командиру, который не верит в победу. Товарищ Кизима, вам с главным инженером мы найдем должности полегче. Директором завода снова назначаю товарища Чурина, а главным инженером – товарища Родионова.

    Товарищ Алявдин работает в самом тяжелом цехе, а паники в его докладе я не уловил. Товарищ Алявдин назначается начальником производства.

    Наука нам заявила, что штат завода не способен внедрить научные рекомендации…

    – Я не это хотел сказать, – запротестовал физик, привыкший, что в «интеллигентной среде» не называют вещи своими именами.

    – Но сказали. Поэтому всех командированных ученых из Москвы я включаю в штат завода и поручаю им исполнить их же рекомендации заводу.

    – Мы не заслуживаем такого наказания! – вновь запротестовал физик.

    – Вы считаете внедрение собственных научных идей наказанием?!

    – Я не это хотел сказать… – растерялся ученый.

    – Зато я сказал, что хотел сказать! – произнес Берия неожиданно ледяным тоном, и все вспомнили, кто он такой.

    – Теперь. Большой проблемой является коррозия элементов машин ЛБ. У нас в СССР есть толковый металлофизик?

    – Профессор Якутович из Свердловска, – послышался голос с места.

    – Запишите фамилию, назначим его заместителем научного руководителя завода. Нужны химики-аналитики. Кто знает толковых? – продолжил Берия поиск решения проблем из своего списка.

    Вечером, когда совещание уже изрядно устало и задымило воздух помещения до состояния лондонского смога, Берия согласовывал сроки исполнения с представителями Горьковского машиностроительного завода.

    – Нам нужно шесть месяцев, чтобы реконструировать машины ЛБ, – утверждал горьковчанин.

    – Вы что – спать на ходу собираетесь? – язвительно поинтересовался Берия.

    – Но их шесть тысяч!

    – Ничего, ваш директор Елян в войну и не такие задачи решал, – четыре месяца и ни днем больше! Кстати, вы Горьковский машиностроительный, а марка ваших машин начинается с буквы «Л», как будто машины ленинградские.

    И вообще, что обозначает это «ЛБ»?

    Все затихли и удивленно уставились на Берию.

    – Товарищ Берия, – наконец ответил удивленный горьковчанин.

    – «ЛБ» – это «Лаврентий Берия».

    – Что?! – Берия откинулся на спинку стула. Это эпидемия какая-то… Партия поручила мне создать вокруг Москвы пояс противовоздушной обороны, оснащенный… скажем так, новым видом оружия. Конструкторы назвали его «Беркут». Ну, беркут и беркут – стремительная птица, и это оружие тоже стремительное. И вот мне сообщают, что «Беркут» – это в честь Берии. – снова придвигается к столу.

    – Значит так. Передайте товарищу Еляну, что у него голова не тем занята! И чтобы все машины были готовы через три месяца!!

    Справка: После убийства Л.П.Берии, диффузионные машины Горьковского машиностроительного завода были переименованы с ЛБ в ОК (отдельная конструкция), а система ПВО «Беркут » в С-25.

    В 1950 году после комплектования завода машинами ЛБ-6 и замены всех двигателей ТД (двигатель-трансформатор) на машинах ЛБ-7 и ЛБ-8, а также после проведения пассивирующей обработки внутренних поверхностей машин и пористых фильтров всех машин, после полного ввода в эксплуатацию холодильной станции для подачи охлаждающей воды низкой (8-10°С) температуры, после постройки цеха сухого воздуха, наконец была налажена нормальная эксплуатация завода Д-1 и выпуск в проектном количестве урана235, вначале 75%-ного, а затем 90%-ного обогащения.

    Специфические производственные и технические сложности и особенности всего комплекса диффузионной технологии оказались столь велики и неприступны, что этой технологией в мире могли овладеть после США (1945 г.) только три индустриально развитые страны: СССР в 1949 г. (завод Д-1), Великобритания в 1956 г. (завод в Кейпенхерсте) и Франция в 1967 г. (завод в Пьерлате).

    А в СССР, вслед за заводом Д-1, в последующие годы уверенно вошли в строй заводы Д-3, Д-4, Д-5 и другие.


    Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении