teen-art.ru – Краткие содержания произведений русских и зарубежных

Краткие содержания произведений русских и зарубежных

Уравнения полимеризации. Полистирол: формула, свойства, получение, применение Сетчатая структура полимера

Лабораторная работа 1

Полимеризация стирола в растворе

Теоретическая часть

Различают два варианта полимеризации в растворе :

1. полимер и мономер растворимы в растворителе;

2. в растворителе растворим только мономер, а полимер осаждается по мере образования.

Практическая часть

Задание.

Написать уравнения химических реакций, протекающих при полимеризации стирола в растворе Провести полимеризацию стирола при 90-95°С в течение 4 часов по двум рецептурам (г) : а) стирол -20,0; пероксид бензоила - 0,4; бензол-10,0 г; б) стирол-20,0; пероксид бензоила-0,4; четыреххлористый углерод-10,0 Выделить полимер и определить его выход (в граммах и %) для каждой рецептуры Определить скорость полимеризации в разных растворителях Проверить растворимость полученного полимера в органических растворителях, отношение его к нагреванию, действию кислот и оснований Провести деполимеризацию полистирола. Рассчитать выход стирола

1 этап работы. Синтез полистирола в разных растворителях.

Реактивы

Стирол (свежеперегнанный), 20,0 г

Пероксид бензоила, 0,4 г

Бензол, 10,0 г

Четыреххлористый углерод, 10,0 г

Петролейный эфир, 100 мл

Спирт этиловый

Серная кислота концентрированная

Азотная кислота концентрированная

Гидроксид натрия, концентрированный раствор

Приборы

Круглодонная колба со шлифом вместимостью 100 мл - 2 шт

Обратный холодильник шариковый – 2 шт

Насос вакуумный

Стакан химический, 200 мл

Выпарительная чашка фарфоровая – 2 шт

Чашка Петри - 2 шт

Водяная баня или колбонагреватель

Электроплитка

Проведение эксперимента

    Навески стирола по 10,0 г помещают в две колбы, добавляют в них по 0,2 г пероксида бензоила, а также растворители: в одну 10,0 г бензола, в другую - 10,0 г четыреххлористого углерода. Каждую колбу соединяют с обратным холодильником и нагревают на водяной бане или колбонагревателе при 90-95°С в течение 4 часов. Затем отключают нагрев, содержимое каждой колбы охлаждают. Добавляют петролейный эфир или этанол. Выпадает осадок полимера. Проверяют полноту осаждения. Полимер промывают осадителем. Осадок отделяют от жидкости, переносят во взвешенную фарфоровую чашку (чашку Петри) и высушивают сначала при комнатной температуре на воздухе, а затем в термостате при 60-70°С или в вакуумном сушильном шкафу при температуре 30-40°С до постоянной массы.*

* все операции: синтез, осаждение и высушивание полимера можно проводить в одной колбе (предварительно взвешенной). Полученный полимер использовать для дальнейших опытов.

Результаты оформить в виде таблиц.

Таблица 1

Таблица 2


Пример расчета. Проведена полимеризация стирола (молекулярная масса 104,14 г/моль; плотность ρ = 0,906 г/мл) в циклогексане с инициатором ДАК (молекулярная масса 164,20 г/моль). Суммарный объем загрузки 30 мл: 20 мл стирола и 10 мл циклогексана. Масса инициатора 0,6 г. Время полимеризации 4 часа. Масса полученного полистирола 13,2 г.

1. Рассчитаем массу и количество вещества стирол :

mстирол = 20·0,906 = 18,12 г

ncтирол = 18,12/104,14 = 0,174 моль

2. Рассчитаем % мас инициатора по отношению к мономеру:

ωДАК = (0,6/18,12)·100 = 3,31% мас (от стирола)

3. Находим концентрацию мономера в растворе:

с (стирол) = (18,12/30)·1000 = 604 г/л или 604/104,14 = 5,80 моль/л

4. Находим концентрацию инициатора в растворе:

с(ДАК) = (0,6/30)·1000 = 20 г/л или 20/164,20 = 0,122 моль/л

5.Рассчитаем выход полистирола :

Выход полистирола = (13,2/18,12) ·100 = 72,8%

6.Рассчитаем скорость полимеризации:

υ = 72,8/4 = 18,2 %/ч или 18,2/60 = 0,303 %/мин

υ = (5,80·0,728)/(4·3600) = 29,32·10-5моль/л·сек

2 этап работы. Определение физических и химических свойств полистирола.

Опыт 1. Внешний вид. Прочность.

Внимательно рассмотрите образцы полистирола, обратите внимание на окраску, испытайте их на ломкость.

*Полистирол прозрачен, может быть различной окраски, хрупкий. Пленки полистирола издают при встряхивании звон, подобно тонкой металлической ленте.

Опыт 2. Отношение к нагреванию

На термостойкую сетку помещают тонкий кусок полистирола и слегка нагревают. При температуре 80-90°С полистирол размягчается, а при >250°С начинает разлагаться. Размягченный кусок полистирола под внешним воздействием легко меняет свою форму. Из размягченного полистирола можно вытягивать нити. Если соединить два размягченных куска полистирола, то они свариваются.

*Полистирол относится к термопластам (обратимым пластмассам).

Опыт 3. Теплоизоляционные свойства.

Для изучения теплоизоляционных свойств используют пенопласт. На железный стержень или проволоку длиной 10 см нужно насадить кусок пенопласта (длина 6-7 см. толщина 4 см). Держа рукой пенопласт, вносят на 1-2 минуты железный стержень в пламя. Нагревание стержня и пенопласта (он немного нагревается) устанавливают термометром. Сначала подносят к нему пенопласт, затем стержень.

Опыт 4. Действие растворителей.

Мелкие кусочки полистирола или пленки помещают в отдельные пробирки с бензолом, ацетоном , четыреххлористым углеродом. Получаются вязкие растворы.

Изделия из полистирола можно склеивать вязким раствором или растворителем.

Опыт 5. Горение полистирола

*Опыт проводят в вытяжном шкафу!!

В пламя вносят кусочек полистирола и держат его до воспламенения.

*Полистирол горит коптящим пламенем, распространяя резкий запах. Вне пламени продолжает гореть.

Опыт 6. Действие кислот и оснований

Кусочки полистирола помещают в концентрированные кислоты: серную (плотность 1,84 г/мл), азотную (плотность 1,4 г/мл), а затем в концентрированный раствор гидроксида натрия. Наблюдают, что происходит с полистиролом при комнатной температуре, а затем при нагревании.

*Полистирол при комнатной температуре в концентрированных кислотах и щелочах остается без изменения. При нагревании он обугливается в серной кислоте, в щелочи и азотной кислоте не изменяется.

Опыт 7. Деполимеризация полистирола

В пробирку помещают более чем на 1/5 её объема кусочки полистирола. К отверстию пробирки присоединяют газоотводную трубку с пробкой. Приемником служит другая пробирка, помещенная в холодную воду и прикрытая сверху ватой. Пробирку с полистиролом укрепляют в штативе наклонно (для стекания жидкости). Отверстие в резиновой пробке лучше сделать ближе к краю для удаления образующейся жидкости (мономера с примесями). В приемник собирается бесцветная или желтоватая жидкость со специфическим запахом. Стирол кипит при температуре 141-146°С.

В широком разнообразии полимерных материалов особое место занимает полистирол. Из этого материала производят огромное количество различных пластиковых изделий как для бытового, так и для промышленного использования. Сегодня мы с вами познакомимся с формулой полистирола, его свойствами, способами получения и направлениями использования.

Общая характеристика

Полистирол является синтетическим полимером, относящимся к классу термопластов. Как можно понять из названия, он представляет собой продукт полимеризации винилбензола (стирола). Это твердый стеклообразный материал. Формула полистирола в общем виде выглядит следующим образом: [СН 2 СН(С 6 Н 5)] n . В сокращенном варианте она выглядит так: (C 8 H 8) n . Сокращенная формула полистирола встречается чаще.

Химические и физические свойства

Наличие фенольных групп в формуле структурного звена полистирола препятствует упорядоченному размещению макромолекул и образованию кристаллических структур. В этой связи материал является жестким, но хрупким. Он представляет собой аморфный полимер с малой механической прочностью и высоким уровнем светопропускания. Он производится в виде прозрачных цилиндрических гранул, из которых путем экструзии получают необходимую продукцию.

Полистирол является хорошим диэлектриком. Он растворяется в ароматических углеводородах, ацетоне, сложных эфирах, и собственном мономере. В низших спиртах, фенолах, алифатических углеводородах, а также простых эфирах полистирол не растворим. При смешивании вещества с другими полимерами, происходит «сшивание», в результате которого образуются сополимеры стирола, обладающие более высокими конструктивными качествами.

Вещество обладает низким влагопоглощением и устойчивостью к радиоактивному облучению. Вместе с тем оно разрушается под действием ледяной уксусной, и концентрированной азотной кислот. При воздействии ультрафиолета полистирол портится - на поверхности образуется микротрещины и желтизна, увеличивается его хрупкость. При нагревании вещества до 200 °С оно начинает разлагаться с выделением мономера. При этом, начиная с температуры в 60 °С, полистирол теряет форму. При нормальной температуре вещество не токсично.

Основные свойства полистирола:

  1. Плотность - 1050-1080 кг/м 3 .
  2. Минимальная рабочая температура - 40 градусов мороза.
  3. Максимальная рабочая температура - 75 градусов тепла.
  4. Теплоемкость - 34*10 3 Дж/кг*К.
  5. Теплопроводность - 0,093-0,140 Вт/м*К.
  6. Коэффициент термического расширения - 6*10 -5 Ом·см.

В промышленности полистирол получают с помощью радикальной полимеризации стирола. Современные технологии позволяют проводить этот процесс с минимальным количеством непрореагировавшего вещества. Реакция получения полистирола из стирола осуществляется тремя способами. Рассмотрим отдельно каждый из них.

Эмульсионный (ПСЭ)

Это самый старый метод синтеза, который так и не получил широкого промышленного применения. Эмульсионный полистирол получают в процессе полимеризации стирола в водных растворах щелочей при температуре 85-95 °С. Для этой реакции необходимы такие вещества: вода, стирол, эмульгатор и инициатор процесса полимеризации. Стирол предварительно избавляют от ингибиторов (гидрохинона и трибутил-пирокатехина). Инициаторами реакции выступают водорастворимые соединения. Как правило, это персульфат калия или двуокись водорода. В качестве эмульгаторов применяют щелочи, соли сульфокислот и соли жирных кислот.

Процесс происходит следующим образом. В реактор наливают водный раствор касторового масла и при тщательном перемешивании вводят стирол вместе с инициаторами полимеризации. Полученную смесь греют до 85-95 градусов. Растворенный в мицеллах мыла мономер, поступая из капель эмульсии, начинает полимеризоваться. Так получаются полимер-мономерные частицы. На протяжении 20 % времени реакции мицеллярное мыло идет на образование слоев адсорбции. Далее процесс идет внутри частиц полимера. Реакция завершается, когда содержание стирола в смеси будет составлять примерно 0,5 %.

Далее эмульсия поступает на стадию осаждения, позволяющую снизить содержание остаточного мономера. С этой целью ее коагулируют раствором соли (поваренной) и высушивают. В результате получается порошкообразная масса с размером частиц до 0,1 мм. Остаток щелочи сказывается на качестве получаемого материала. Устранить примеси полностью невозможно, а их наличие обуславливает желтоватый оттенок полимера. Этот метод позволяет получить продукт полимеризации стирола с наибольшей молекулярной массой. Получаемое таким способом вещество имеет обозначение ПСЭ, которое периодически можно встретить в технических документах и старых учебниках по полимерам.

Суспензионный (ПСС)

Этот метод осуществляется по периодической схеме, в реакторе, оборудованном мешалкой и теплоотводящей рубашкой. Для подготовки стирола его суспензируют в химически чистой воде с помощью стабилизаторов эмульсии (поливиниловый спирт, полиметакрилат натрия, гидроксид магния), а также инициаторов полимеризации. Процесс полимеризации проходит под давлением, при постоянном повышении температуры, вплоть до 130 °С. В итоге получается суспензия, из которой первичный полистирол отделяют с помощью центрифугирования. После этого вещество промывают и высушивают. Этот метод также считается устаревшим. Он пригоден в основном для синтезирования сополимеров стирола. Его применяют в основном в производстве пенополистирола.

Блочный (ПСМ)

Получение полистирола общего назначения в рамках этого метода можно проводить по двум схемам: полной и неполной конверсии. Термическая полимеризация по непрерывной схеме осуществляется на системе, состоящей из 2-3 последовательно соединенных колонных аппаратов-реакторов, каждый из которых оборудован мешалкой. Реакцию проводят постадийно, увеличивая температуру с 80 до 220 °С. Когда степень превращения стирола доходит до 80-90 %, процесс прекращается. При методе неполной конверсии степень полимеризации достигает 50-60 %. Остатки непрореагировавшего стирола-мономера удаляют из расплава путем вакуумирования, доводя его содержание до 0,01-0,05 %. Полученный блочным методом полистирол отличается высокой стабильностью и чистотой. Эта технология является наиболее эффективной, в том числе и потому, что практически не имеет отходов.

Применение полистирола

Полимер выпускается в виде прозрачных цилиндрических гранул. В конечные изделия их перебарывают путем экструзии или литья, при температуре 190-230 °С. Из полистирола производят большое количество пластиков. Распространение он получил благодаря своей простоте, невысокой цене и широкому ассортименту марок. Из вещества получают массу предметов, которые стали неотъемлемой частью нашей повседневной жизни (детские игрушки, упаковка, одноразовая посуда и так далее).

Полистирол широко используют в строительстве. Из него делают теплоизоляционные материалы - сэндвич-панели, плиты, несъемные опалубки и прочее. Кроме того, из данного вещества производят отделочные декоративные материалы - потолочные багеты и декоративную плитку. В медицине полимер используют для производства одноразовых инструментов и некоторых деталей в системах переливания крови. Вспененный полистирол также применяют в системах для очистки воды. В пищевой промышленности используют тонны упаковочного материала, сделанного из данного полимера.

Существует и ударопрочный полистирол, формула которого изменяется путем добавления бутадиенового и бутадиенстирольного каучука. На этот вид полимера приходится более 60 % всего производства полистирольного пластика.

Благодаря предельно низкой вязкости вещества в бензоле можно получить подвижные растворы в придельных концентрациях. Этим обуславливается использование полистирола в составе одного из видов напалма. Он играет роль загустителя, у которого по мере увеличения молекулярной массы полистирола уменьшается зависимость «вязкость-температура».

Преимущества

Белый термопластичный полимер может стать отличной заменой пластику ПВХ, а прозрачный - оргстеклу. Популярность вещество получило главным образом благодаря гибкости и легкости в обработке. Оно отлично формуется и обрабатывается, предотвращает потери тепла и, что немаловажно, имеет низкую стоимость. Благодаря тому, что полистирол может хорошо пропускать свет, его даже используют в остеклении зданий. Однако размещать такое остекление на солнечной стороне нельзя, так как под действием ультрафиолета вещество портится.

Полистирол давно используется для изготовления пенопластов и сопутствующих материалов. Теплоизоляционные свойства полистирола во вспененном состоянии, позволяют использовать его для утепления стен, пола, кровли и потолков, в зданиях различного назначения. Именно благодаря обилию утеплительных материалов, во главе которых стоит пенополистирол, простые обыватели знают о рассматриваемом нами веществе. Эти материалы отличаются простой в использовании, устойчивостью к гниению и агрессивным средам, а также отличными теплоизоляционными свойствами.

Недостатки

Как и у любого другого материала, у полистирола есть недостатки. Прежде всего, это экологическая небезопасность (речь идет об отсутствии методов безопасной утилизации), недолговечность и пожароопасность.

Переработка

Сам по себе полистирол не представляет опасности для окружающей среды, однако некоторые продукты, полученные на его основе, требуют особого обращения.

Отходы материала и его сополимеров накапливаются в виде изделий, вышедших из употребления, и промышленных отходов. Вторичное использование полистирольных пластиков, производится несколькими путями:

  1. Утилизация промышленных отходов, которые были сильно загрязнены.
  2. Переработка технологических отходов методами литья, экструзии и прессования.
  3. Утилизация изношенных изделий.
  4. Утилизация смешанных отходов.

Вторичное применение полистирола позволяет получить новые качественные изделия со старого сырья, не загрязняя при это окружающую среду. Одним из перспективных направлений переработки полимера является производство полистиролбетона, который применяется в строительстве зданий малой этажности.

Продукты разложения полимера, образующиеся при термодеструкции или термоокислительной деструкции, токсичны. В процессе переработки полимера путем частичной деструкции могут выделяться пары бензола, стирола, этилбензола, оксида углерода и толуола.

Сжигание

При сжигании полимера выделяется диоксид углерода, монооксид углерода и сажа. В общем виде уравнение реакции горения полистирола выглядит так: (С 8 Н 8) n + О 2 = СО 2 + Н 2 О. Сжигание полимера, содержащего добавки (компоненты увеличивающие прочность, красители и т. д.), приводит к выбросу ряда других вредных веществ.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Тема: Полимеризация стирола в эмульсии

Цель работы: провести полимеризацию стирола эмульсионным способом, построить зависимость выхода полистирола от времени, определить молекулярную массу полимера вискозиметрическим методом.

Теоретическая часть

Полимеризация - процесс образования высокомолекулярных соединений в результате соединения большого числа молекул мономера в одну макромолекулу. При этом молекулы мономера и полимера имеют один и тот же элементарный состав. В общем случае реакцию полимеризации можно представить следующим образом:

полимеризация стирол способ эмульсионный

где X - заместитель. При этом не выделяются какие-либо побочные продукты.

В реакцию полимеризации могут вступать соединения, содержащие двойные или тройные связи, а также карбо- и гетероциклы.

Большинство процессов полимеризации имеет цепной характер и протекает через стадии инициирования, роста и обрыва цепи.

Инициирование цепи происходит путем присоединения активного центра к молекуле мономера, в результате чего происходит гемолитический или гетеролитический разрыв его реакционноспособных связей. Вновь образующийся активный центр представляет собой активный радикал либо ион:

В зависимости от типа активных центров, инициирующих цепной процесс, различают радикальную и ионную полимеризацию.

Рост цепи представляет собой многократное повторение актов присоединения молекул мономера к активному центру на конце цепи, в результате чего образуется активный полимер.

Обрыв цепи происходит обычно либо в результате взаимодействия двух растущих цепей (рекомбинация), либо в результате взаимодействия растущей макромолекулы с молекулами примесей или растворителя (передача цепи).

Радикальная полимеризация

При радикальной полимеризации активным центром является свободный радикал. В зависимости от способа образования радикалов (инициирования) можно выделить термическую полимеризацию, фотохимическую, радиационную (под действием гамма-лучей, рентгеновских лучей, ускоренных электронов), а также химически инициированную полимеризацию, протекающую в присутствии химических инициаторов - соединений, легко распадающихся в условиях реакции с образованием свободных радикалов.

Химически инициированная полимеризация является одним из наиболее распространенных методов радикальной полимеризации. В качестве инициаторов применяются пероксиды, гидропероксиды, азо- и диазо- соединения, окислительно - восстановительные системы и др. Например, распад пероксида бензола протекает с образованием двух радикалов:

Динитрил азобисизомасляной кислоты распадается с выделением азота, а также образует два радикала:

Энергия активации распада большинства инициаторов составляет свыше 120 КДж/моль.

При полимеризации часто используют окислительно-восстановительное инициирование. Особенностью такого инициирования является низкая энергия активации, что позволят проводить процесс при низких температурах. Примером такого инициирования может служить взаимодействие пероксида водорода с солями двухвалентного железа, в результате чего образуются свободные радикалы:

Энергия активации в окислительно-восстановительных системах составляет в среднем около 40 КДж/моль.

Реакция полимеризации начинается со стадии присоединения свободных радикалов к молекулам мономера, что приводит к возникновению реакционной цепи:

Полученное соединение так же является свободным радикалом и далее вступает в реакцию с большим числом молекул мономера, т.е. происходит рост цепи:

Таким образом, стадия роста цепи состоит из последовательного ряда актов взаимодействия свободного радикала с молекулами мономера. Скорость радикальной полимеризации определяется уравнением

где k р - константа скорости роста; k - константа скорости инициирования; k o - константа скорости обрыва цепи; [I] -концентрация инициатора; [М] - концентрация мономера.

Прекращение роста цепи или обрыв цепи, как правило, является результатом взаимодействия двух радикалов и происходит путем либо рекомбинации макрорадикалов, либо диспропорционирования. При рекомбинации макрорадикалов образуется одна полимерная молекула, не способная участвовать в дальнейшем росте:

При диспропорционировании число макромолекул не изменяется.

Обрыв цепи также может происходить в результате реакции передачи цепи. Передача цепи осуществляется при взаимодействии растущих макрорадикалов с молекулами мономера, полимера, а также с примесями или растворителями:

Образовавшийся активный радикал R, реагируя с молекулами мономера, дает начало новой цепи:

В случае образования неактивного радикала, не способного продолжить реакционную цепь, происходит прекращение полимеризации.

Ионная полимеризация

Активными центрами ионной полимеризации являются ионы, образующие в неполярных растворителях ионные пары. В полярных растворителях возникают сольватно-разделенные ионные пары и свободные ионы.

В зависимости от природы катализаторов и заряда образующихся ионов различают катионную и анионную полимеризацию.

Катионная полимеризация

Катионная полимеризация протекает под действием кислот и катализаторов Фиделя-Крафтса (АlCl 3 , ВF 3 , SnCl 4 , FеСl 3 и т.п.), т.е. электронакцепторных веществ. В присутствии воды, кислот, эфиров и других веществ, играющих роль сокатализатора, образуется активный каталитический комплекс, инициирующий реакцию:

При взаимодействии этого комплекса с молекулой мономера образуется активный карбоениевый центр:

Реакция роста заключается в присоединении молекул мономера к активному карбениевому центру с регенерацией этого активного центра на конце цепи:

Скорость роста описывается уравнением

где [С] - концентрация катализатора.

Катионная полимеризация протекает, как правило, с очень высокой скоростью, что позволяет проводить процесс при низких температурах. Например, полимеризацию изобутилена проводят при t= -100°С в среде жидкого этилена.

Обрыв цепи происходит как молекулярная реакция с отщеплением протона от соседнего с карбениевым ионом атома углерода и диссоциации каталитического комплекса:

Анионная полимеризация

Анионная полимеризация протекает в присутствии щелочных металлов, металлоорганических соединений, амида натрия, алкоголятов щелочных металлов и других электрондопорных соединений. Наибольшее практическое значение имеет полимеризация, протекающая под действием щелочных металлов или их алкинов.

Полимеризация акрилонитрила под действием амида калия в жидком аммиаке вызывается свободными ионами, вследствие диссоциации амида:

Образование карбоаниона происходит при взаимодействии амидного иона с молекулой мономера:

Рост цепи происходит в результате взаимодействия образовавшегося карбаниона с молекулой мономера с образованием нового аниона. Обрыв цепи происходит путем взаимодействия карбаниона с молекулой аммиака с регенерацией амидного иона, т.е. протекает реакция передачи цепи.

Ионно-координационная полимеризация

Ионно-координационная полимеризация вызывается комплексными катализаторами Циглера-Натта. Чаще всего в качестве катализаторов используют металлоорганические соединения алюминия и хлориды титана.

Активные центры при ионно-координационной полимеризации представляют собой металлоорганические соединения переходного металла. Они возникают в присутствии сокатализатора или при взаимодействии исходных мономеров с металлгидридными центрами на поверхности катализатора.

Образование активного металлографического соединения происходит следующим образом:

Рост полимерной цепи осуществляется путем внедрения молекулы мономера по связи в переходный металл-углерод:

Стадии внедрения молекулы мономера предшествует ее координация на металле с образованием неустойчивого р - компонента. Поэтому комплексные катализаторы получили название ионно -координационных . Обрыв цепи происходит в результате миграции атома водорода от атома углерода к металлу с образованием гидрида переходного металла и полимерной молекулы.

Использование для полимеризации комплексных металлоорганических катали-заторов приводит к образованию стереорегулярных полимеров . Эти катализаторы обладают высокой стереоспецифичностью .

2. СПОСОБЫ ПРОВЕДЕНИЯ ПОЛИМЕРИЗАЦИИ

В промышленности полимеризация осуществляется следующими основными способами: в газовой фазе, блоке (массе), растворе, эмульсии и суспензии.

2.1 Газовая полимеризация

Газофазной полимеризации подвергаются газообразные мономеры (этилен, пропилен). Процесс инициируется кислородом, который добавляется в мономер в небольших количествах (0,002ч0,008% об.) и проводится под большим давлением.

При взаимодействии этилена с кислородом образуются пероксидные или гидропероксильные соединения этилена:

Неустойчивая пероксидная связь - О - О под действием тепла разрывается с образованием би- и монорадикалов: ОСН 2 -СН 2 О · и СН 2 =СНО · . Свободные радикалы инициируют полимеризацию этилена.

2.2 Блочная полимеризация

Блочную полимеризацию или полимеризацию в массе проводят в конденсированной фазе в отсутствии растворителя. В результате полимеризации образуется концентрированный раствор (или расплав) полимера в мономере или монолитная твердая масса (блок).

Обычно блочную полимеризацию проводят в присутствии инициаторов или при термическом инициировании. По мере увеличения степени полимеризации мономера увеличивается молекулярная масса среды и ее вязкость, что затрудняет отвод тепла из зоны реакции. В результате этого могут возникать местные перегревы реакционной массы, вследствие чего полимер получается неоднородным по молекулярной массе. Поэтому блочную полимеризацию проводят с малой скоростью.

2.3 Полимеризация в растворе

Возможны два способа проведения полимеризации в растворе. По первому способу применяется растворитель, который растворяет и мономер, и полимер. Получаемый раствор полимера (лак) используют как таковой или полимер выделяют. По второму способу применяют растворитель, который растворяет мономер, но не растворяет полимер. Образующейся полимер выпадает в осадок.

При полимеризации в растворе значительно улучшается отвод выделяющегося в ходе реакции тепла, но в результате протекания реакций передачи цепи через растворитель получаемые полимеры имеют более низкую молекулярную массу.

2.4 Полимеризация в эмульсии

При эмульсионной полимеризации в качестве дисперсионной среды обычно используют воду. Для стабилизации эмульсии применяют различные эмульгаторы (олеаты, пальмитаты, и другие соли жирных кислот). Эмульсионную полимеризацию проводят в присутствии водорастворимых инициаторов (персульфат калия, пирофосфаты бикарбонаты). Для уменьшения разветвленности цепи добавляют меркаптаны.

Для создания тонкой эмульсии реакционную смесь энергично перемешивают, в результате чего мономер разбивается на мелкие капли, покрытые слоем эмульгатора.

Полимеризация протекает в адсорбционных слоях эмульгатора на поверхности полимерно-мономерных частиц. Растущая макромолекула является центром, вкруг которого образуется частица латекса. Полученный латекс коагулируют, вводя в систему раствор электролита, а выпавший в осадок полимер отделяют. В результате эмульсионной полимеризации получается полимер с большой молекулярной массой и низкой степенью полидисперсности.

Возможность применения эмульсионного способа в ряде случаев ограничивает образование большого количества сточных вод, требующих очистки от токсичных мономеров, а также трудоемкость стадии сушки тонкодисперсного полимера. Кроме того, недостатком способа является загрязнение полимера остатками эмульгатора и других добавок, что ухудшает его электрические свойства.

2.5 Полимеризация в суспензии

Полимеризация в суспензии проводится также в воде. Для повышения устойчивости образующейся более грубой эмульсии используют слабые эмульгаторы - поливиниловый спирт, водорастворимые эфиры целлюлозы, желатин, глину, оксид алюминия и т. п. Применяемые инициаторы растворимы в мономере.

Полимеризация происходит в каплях, представляющих, в сущности, небольшие блоки, поэтому такую полимеризацию иногда называют капельной (гранульной) полимеризацией.

В отличие от эмульсионной полимеризации в данном случае отпадает необходимость в проведении коагуляции, так как образующиеся гранулы полимера свободно выделяются из водной фазы.

Порядок выполнения работы

Полимеризация стирола эмульсионным способом проводится на лабораторной установке, схема которой приведена на рисунке 1.

Полимеризация стирола проводится по рецепту, приведенному ниже (в весовых частях):

Стирол 50 г.

Вода дистиллированная 90 мл

Персульфат аммония 0,35 г

Стеарат калия 2,3 г

В реакционной колбе приготовляют раствор эмульгатора в воде при 70 °С. По каплям при хорошем перемешивании добавляют стирол и через 10-15 минут вводят инициатор, растворенный в 10 мл количестве воды. Через 30, 60 и 90 минут после введения инициатора пипеткой отбирают пробы реакционной массы точно по 10 мл. Эмульсию в пробах разрушают добавлением 10 - 15 мл раствора NaCl и 2 капли 1н азотной кислоты.

Осадок полимера, образующийся при разрушении эмульсии, отфильтровывают на предварительно взвешенном фильтре и промывают водой. Полимер сушат на воздухе до постоянной массы.

1 - колбонагреватель; 2 - трехгорлая колба; 3 - обратный холо-дильник; 4 - гидрозатвор; 5 - мешалка; 6 - термометр; 7 - ЛАТР

Рисунок 1 - Схема лабораторной установки

Обработка экспериментальных данных

Выход полимера в каждой пробе определяется по уравнению

где G n - масса полимера в пробе;

G M - масса мономера в пробе перед началом опыта.

Таблица 1 - Зависимость массы и выхода полимера от времени

По полученным данным строим зависимость выхода полимера от времени

Рисунок 2 - График зависимости выхода полимера от времен

Определение молекулярной массы полимера

Молекулярную массу полученного полистирола определяют вискозиметрическим методом. Для этого из высушенной третьей пробы берут три навески полимера весом 0,1; 0,2 и 0,3 г и каждую растворяют в 20 мл толуола.

Для определения молекулярной массы используют стеклянный вискозиметр, имеющий две риски. Последовательно определяют время истечения 20 мл чистого толуола и растворов полимера, в порядке увеличения концентрации полимера, между верхней и нижней риской.

Определение времени истечения повторяют трижды для каждого образца и определяют среднее значение времени.

Таблица 2 - время истечения полимера и чистого толуола.

Полученные значения времени истечения чистого толуола и трех растворов используют в расчетах. Определяют относительную вязкость каждого раствора по формуле:

где t - время истечения раствора полимера;

t o - время истечения чистого растворителя.

Удельную вязкость:

Приведенную вязкость:

где С - концентрация полимера в растворе (г/100 мл растворителя).

Найдем концентрации:

Подставляя в уравнение, получим:

Определив приведенную вязкость для каждого раствора, строят зависимость приведенной вязкости от концентрации полимера. Экстраполируя полученную зависимость к нулевой концентрации полимера, получают х а рактеристическую вязкость.

Пример построения графической зависимости приведенной вязкости от концентрации полимера и определения характеристической вязкости показан на рисунке 3.

Таблица 3 - Вязкости для трех проб

Размещено на http://www.allbest.ru/

Рисунок 3 - Определение характеристической вязкости

Для определения молекулярной массы полимера используют уравнение Мар-ка-Хувинга:

Исходя, из уравнения прямой зависимости вязкости раствора полимера от концентрации видим,= 1,2767, а для системы полистирол-толуол при температуре 25°С константы имеют следующие значения: а = 0,69, К =1,7· 10 -4 . Подставляя, получим:

М = 413875,3 г/моль

В ходе данной работы провели полимеризацию стирола эмульсионным способом, построили зависимость выхода полистирола от времени и определили молекулярную массу полимера вискозиметрическим методом: М = 413875,3 г/моль.

В качестве рекомендации к проведению процесса можно принять к сведению, что требуется изменение конструкции элемента перемешимания, для образования более мелкодисперсной эмульсии, что приведет к более качественному получению продуктов реакции полимеризации стирола.

Необходимо применение более совершенного нагревателя, для точного регулирования температуры процесса и наилучшего выхода процесса на режим.

Размещено на Allbest.ru

Подобные документы

    Понятие и значение полимеризации, особенности стадий этого процесса на примере радикального механизма. Сущность и обзор способов получения полистирола, его физических и химических свойств как вещества. Анализ сфер применения и технология переработки.

    презентация , добавлен 17.11.2011

    Характеристика методов получения политетрафторэтилена: эмульсионная, радиационная, суспензионная полимеризация, фотополимеризация. Кинетика и механизм суспензионной полимеризации тетрафторэтилена в воде, зависимость его плотности от молекулярной массы.

    курсовая работа , добавлен 13.12.2010

    Молекулярная масса и влияние степени полимеризации целлюлозы на отдельные стадии технологического процесса получения искусственных волокон и пленок. Химические и физико-химические методы определения степени полимеризации целлюлозы и ее молекулярной массы.

    реферат , добавлен 28.09.2009

    Практические методы осуществления процесса полимеризации, принципы выбора инициатора и стабилизатора. Новшества в производстве суспензионного полистирола. Характеристика исходного сырья, полупродуктов и готовой продукции. Нормы технологического режима.

    курсовая работа , добавлен 25.01.2014

    "Живая" контролируемая радикальная полимеризация. Характеристики получаемого полимера. Признаки протекания полимеризации в контролируемом режиме. Метод диаграмм Фишера. Радикальная "живая" полимеризация гидрофильных мономеров. Анализ продуктов термолиза.

    дипломная работа , добавлен 17.10.2013

    Изучение основных реакций, обусловливающих формирование молекулярной цепи полиизопрена, и их количественная оценка. Участие молекул мономера и непредельных фрагментов полиизопрена в определении концентрации активных центров в процессе полимеризации.

    реферат , добавлен 18.03.2010

    Аналитический обзор методов производства поливинилхлорида. Физико-химические основы производства винилхлорида. Производство поливинилхлорида методом блочной полимеризации. Эмульсионная полимеризации винилхлорида. Полимеризация винилхлорида в суспензии.

    реферат , добавлен 24.05.2012

    Исследование полимеризации диацетиленовых мономеров, полимеризующихся только в кристаллическом состоянии с образованием полимеров, состоящих из вытянутых цепей с сопряженными связями. Термическая полимеризация и полимеризация под действием Y излучения.

    реферат , добавлен 22.02.2010

    Практическое проведение эмульсионной полимеризации и сополимеризации акриловых мономеров, скорость и кинетика реакции, влияющие факторы. Способ предварительного создания концентрированной эмульсии, образование микроэмульсии и анализ ее дисперсности.

    статья , добавлен 22.02.2010

    Понятие и общая характеристика полистирола, особенности его химического строения, физические свойства и сферы применения. Методика получения данного соединения, используемое сырье и технологический процесс производства. Этапы проведения полимеризации.

Высокомолекулярными соединениями (ВМС) называют соединения с молекулярной массой более 10000.

Практически все высокомолекулярные вещества являются полимерами.

Полимеры — это вещества, молекулы которых состоят из огромного числа повторяющихся структурных звеньев, соединенных между собой химическими связями.

Полимеры могут быть получены с помощью реакций, которые можно разделить на два основных типа: это реакции полимеризации и реакции поликонденсации .

Реакции полимеризации

Реакции полимеризации — это реакции образования полимера путем объединения огромного числа молекул низкомолекулярного вещества (мономера).

Количество молекул мономера (n ), объединяющихся в одну молекулу полимера, называют степенью полимеризации .

В реакцию полимеризации могут вступать соединения с кратными связями в молекулах. Если молекулы мономера одинаковы, то процесс называют гомополимеризацией , а если различны — сополимеризацией .

Примерами реакций гомополимеризации, в частности, является реакция образования полиэтилена из этилена:

Примером реакции сополимеризации является синтез бутадиен-стирольного каучука из бутадиена-1,3 и стирола:

Полимеры, получаемые реакцией полимеризации, и исходные мономеры

Мономер

Получаемый из него полимер

Структурная формула

Варианты названия

Структурная формула

Варианты названия

этилен, этен полиэтилен
пропилен, пропен полипропилен
стирол, винилбензол полистирол, поливинилбензол
винилхлорид, хлористый винил, хлорэтилен, хлорэтен поливинилхлорид (ПВХ)
тетрафторэтилен (перфторэтилен) тефлон, политетрафторэтилен
изопрен (2-метилбутадиен-1,3) изопреновый каучук (натуральный)
бутадиен-1,3 (дивинил) бутадиеновый каучук, полибутадиен-1,3

хлоропрен(2-хлорбутадиен-1,3)

хлоропреновый каучук

бутадиен-1,3 (дивинил)

стирол (винилбензол)

бутадиенстирольный каучук

Реакции поликонденсации

Реакции поликонденсации — это реакции образования полимеров из мономеров, в ходе которых, помимо полимера, побочно образуется также низкомолекулярное вещество (чаще всего вода).

В реакции поликонденсации вступают соединения, в состав молекул которых входят какие-либо функциональные группы. При этом реакции поликонденсации по тому, один используется мономер или больше, аналогично реакциям полимеризации делятся на реакции гомополиконденсации и сополиконденсации .

К реакциям гомополиконденсации относятся:

* образование (в природе) молекул полисахарида (крахмала, целлюлозы) из молекул глюкозы:

* реакция образования капрона из ε-аминокапроновой кислоты:

К реакциям сополиконденсации относятся:

* реакция образования фенолформальдегидной смолы:

* реакция образования лавсана (полиэфирного волокна):

Материалы на основе полимеров

Пластмассы

Пластмассы — материалы на основе полимеров, которые способны под действием нагревания и давления формоваться и сохранять заданную форму после охлаждения.

Помимо высокомолекулярного вещества в состав пластмасс входят также и другие вещества, однако основным компонентом все же является полимер. Благодаря своим свойствам он связывает все компоненты в единую целую массу, в связи с чем его называют связующим.

Пластмассы в зависимости от их отношения к нагреванию делят на термопластичные полимеры (термопласты ) и реактопласты .

Термопласты — вид пластмасс, способных многократно плавиться при нагревании и застывать при охлаждении, благодаря чему возможно многоразовое изменение их изначальной формы.

Реактопласты — пластмассы, молекулы которых при нагревании «сшиваются» в единую трехмерную сетчатую структуру, после чего изменить их форму уже нельзя.

Так, например, термопластами являются пластмассы на основе полиэтилена, полипропилена, поливинилхлорида (ПВХ) и т.д.

Реактопластами, в частности, являются пластмассы на основе фенолформальдегидных смол.

Каучуки

Каучуки — высокоэлластичные полимеры, углеродный скелет которых можно представить следующим образом:

Как мы видим, в молекулах каучуков имеются двойные C=C связи, т.е. каучуки являются непредельными соединениями.

Каучуки получают полимеризацией сопряженных диенов, т.е. соединений, у которых две двойные C=C связи, разделены друг от друга одной одинарной С-С связью.

1) бутадиен:

В общем виде (с демонстрацией только углеродного скелета) полимеризация таких соединений с образованием каучуков может быть выражена схемой:

Таким образом, исходя из представленной схемы, уравнение полимеризации изопрена будет выглядеть следующим образом:

Весьма интересным является тот факт, что впервые с каучуком познакомились не самые продвинутые в плане прогресса страны, а племена индейцев, у которых промышленность и научно-технический прогресс отсутствовали как таковые. Естественно, индейцы не получали каучук искусственным путем, а пользовались тем, что давала им природа: в местности, где они проживали (Южная Америка), произрастало дерево гевея, сок которого содержит до 40-50% изопренового каучука. По этой причине изопреновый каучук называют также натуральным, однако он может быть получен и синтетическим путем.

Все остальные виды каучука (хлоропреновый, бутадиеновый) в природе не встречаются, поэтому всех их можно охарактеризовать как синтетические.

Однако каучук, не смотря на свои преимущества, имеет и ряд недостатков. Так, например, из-за того что каучук состоит из длинных, химически не связанных между собой молекул, его свойства делают его пригодным для использования только в узком интервале температур. На жаре каучук становится липким, даже немного текучим и неприятно пахнет, а при низких температурах подвержен затвердеванию и растрескиванию.

Технические характеристики каучука могут быть существенно улучшены его вулканизацией. Вулканизацией каучука называют процесс его нагревания с серой, в результате которого отдельные, изначально не связанные друг с другом, молекулы каучука «сшиваются» друг с другом цепочками из атомов серы (полисульфидными «мостиками»). Схему превращения каучуков в резину на примере синтетического бутадиенового каучука можно продемонстрировать следующим образом:

Волокна

Волокнами называют материалы на основе полимеров линейного строения, пригодные для изготовления нитей, жгутов, текстильных материалов.

Классификация волокон по их происхождению

Искусственные волокна (вискозу, ацетатное волокно) получают химической обработкой уже существующих природных волокон (хлопка и льна).

Синтетические волокна получаются преимущественно реакциями поликонденсации (лавсан, капрон, нейлон).

В процессе блочной полимеризации стирола образуется раствор синтезируемого полимера в не вступившем в реакцию мономере. С ростом глубины процесса (степени конверсии мономера) увеличивается концентрация раствора и соответственно растет его показатель преломления . Замеряя показатель преломления раствора по ходу полимеризации, можно получить информацию о кинетике процесса (в данном случае – полимеризации стирола).

В три пробирки с пришлифованными пробками помещают по 5 мл стирола и вносят взятые на аналитических весах навески инициатора – АИБН – в количествах порядка 10, 25 и 50 мг (концентрация растворов соответственно порядка 0,2, 0,5 и 1% масс.). Пробирки продувают инертным газом в течение 5 мин и помещают в термостат с температурой порядка 70 0 . Через 10 мин. после начала термостатирования из каждой пробирки на часовое стекло отбирают стеклянной палочкой несколько капель раствора и определяют показатель преломления. Из каждой пробирки отбирают не менее пяти проб ,каждый раз отмечая время с начала полимеризации .

Степень конверсии мономера определяют по приводимой ниже таблице.

Зависимость показателя преломления n D от степени конверсии (р) стирола

p,% n D p, % n D p, % n D
1,5420 1,5475 1,5518
1,5429 1,5482 1,5519
1,5435 1,5488 1,5523
1,5441 1,5492 1,5525
1,5446 1,5495 1,5528
1,5451 1,5500 1,5531
1, 5455 1,5504 1,5534
1,5461 1,5508 1,5537
1,5465 1,5511 1,5540
1,5468 1,5515 1,5543

Концентрацию инициатора (в моль/л) находят по формуле:

Где g – навеска инициатора (в г)

V – объём полимеризующейся смеси (в данном случае – 5 мл)

М 1 – молекулярная масса инициатора (для АИБН М 1 = 164)



Тангенс угла наклона полученной прямой равен порядку реакции по инициатору.

КАТИОННАЯ ПОЛИМЕРИЗАЦИЯ СТИРОЛА


Полимеризация стирола может протекать по различным вариантам, в том числе и по катионному механизму. В качестве катализаторов катионной полимеризации часто используют неорганические кислоты Льюиса – в данном случае TiCl 4 . Использование этого катализатора требует проведение реакции в условиях, исключающих попадание влаги – прежде всего абсолютно сухой аппаратуры.

Стирол свежеперегнанный 3,5 мл

Тетрахлорид титана перегнанный 1 мл

Дихлорэтан сухой 70 мл

В трехгорлую колбу, снабженную мешалкой, термометром и капельной воронкой и продутую инертным газом в течение 3-5 мин., помещают 70 мл сухого дихлорэтана и охлаждают до 0 0 С в бане с охлаждающей смесью.

Сухой пипеткой вносят 1 мл TiCl 4 и из капельной воронки в течение 15-20 мин. по каплям вводят мономер – стирол, следя, чтобы температура не превышала 0 0 . После введения мономера смесь перемешивают еще 30 мин., а затем приливают 80 мл спирта (для разложения реакционной смеси). Через несколько минут осторожно декантируют растворитель с выделившегося маслообразного продукта реакции, прибавляют еще 10-15 мл спирта и растирают палочкой до затвердевания. Твердый полимер отфильтровывают, промывают спиртом и высушивают. Определяют выход полимера и степень конверсии мономера, а также расход катализатора в г/ г полимера.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении