teen-art.ru – Краткие содержания произведений русских и зарубежных

Краткие содержания произведений русских и зарубежных

Что такое лазерное излучение? Лазерное излучение: его источники и защита от него. Основные принципы и биологические механизмы воздействия лазерного излучения на кожу Лазерному излучению присущи все перечисленные свойства

Лазерное излучение обладает следующими физическими свойствами:

1. Высокая пространственная и временнáя когерентность. Это означает, что определённые фазовые соотношения между отдельными волнами сохраняются в течение некоторого времени не только в данной точке пространства, но и между колебаниями, происходящими в разных точках. Такая согласованность процессов позволяет сфокусировать пучок лазерного излучения в пятно диаметром равным длине волны этого излучения. Это позволяет увеличить и без того большую интенсивность пучка лазерного излучения.

2. Строгая монохроматичность излучения. Интервал длин волн Δλ испускаемых лазером достигает величины ~ 10 -15 м (в среднем Δλ < 10 -11).

3. Большая плотность потока энергии. Так, например, неодимовый лазер генерирует импульсы длительностью 3·10 -12 с и энергией 75 Дж, что соответствует мощности 2,5·10 13 Вт (мощность Красноярской ГЭС 6·10 9 Вт)! Для сравнения отметим так же, что интенсивность солнечного света на поверхности Земли всего лишь 10 3 Вт/м 2 , в то время как лазерные системы могут давать интенсивность до 10 20 Вт/м 2 .

Необычные свойства лазерного излучения находят широкое практическое применение. В промышленности лазеры используют для обработки, резания и микросварки твёрдых материалов (например, пробивание калиброванных отверстий в алмазе), скоростного и точного обнаружения дефектов обработки поверхностей и др. В науке лазерное излучение применяют для исследования механизма химических реакций и получения сверхчистых веществ; для разделения изотопов и изучения высокотемпературной плазмы; для сверхточных дистанционных измерений перемещений, показателей преломления, давления и температуры (в астрономии). Высокая когерентность лазерного излучения позволила осуществить принципиально новый метод записи и восстановления изображения, основанный на интерференции и дифракции волн. Этот метод получения трёхмерного изображения был назван голографией (от греческого слова holos – весь). Он заключается в следующем (рис.7): перед экраном-фотодетектором (фотопластинка) 3 помещён объект 2. Полупрозрачное зеркало 4 расщепляет лазерный пучок на опорную 7 и сигнальную 8 волны. Опорная волна 7, сфокусированная линзой 5, отражается зеркалом 6 прямо на фотопластинку. Сигнальная волна 8 попадает на фотодетектор после отражения от предмета 2. Т.к. волны 7 и 8 когерентны, то накладываясь друг на друга, они образуют на фотопластинке интерференционную картину. После проявления фотодетектора получается голограмма – «негатив» интерференционной картины сложения двух когерентных световых волн 7 и 8.

При освещении голограммы световой волной тождественной опорной под соответствующим углом происходит дифракция этой «считывающей» волны на «дифракционной решётке», которую представляет собой зафиксированная на голограмме интерференционная картина. В результате восстанавливается (становится наблюдаемым) зарегистрированное на голограмме изображение объекта.

Если фотодетектор имеет толщину светочувствительного слоя сравнимую с расстоянием между соседними интерференционными полосами, получают обычную двухмерную, плоскую голограмму, если же толщина слоя много больше расстояния между полосами – получают трёхмерное (объёмное) изображение.

Восстановить изображение с объёмной голограммы можно и в белом свете (солнечный свет или свет обычной лампы накаливания) – голограмма сама “выбирает” из сплошного спектра ту длину волны, которая может восстановить записанное на голограмме изображение.

Рассмотрим основные эффекты взаимодействия лазерного излучения с веществом и биологическими объектами.

Термический эффект. При поглощении лазерного излучения веществом, тканями человека, животных и растений значительная часть энергии электромагнитного поля переходит в теплоту. В биологических тканях поглощение происходит избирательно, т.к. входящие в состав тканей структурные элементы имеют разные показатели поглощения и отражения. Термический эффект лазерного облучения определяется интенсивностью светового потока и степенью его поглощения тканью. При этом изменения, возникающие в тканях, сходны с ожогом. Однако в отличие от ожога границы области локального повышения температуры чётко очерчены. Это связано с очень малым поперечным сечением пучка лазерного излучения, кратковременностью воздействия и плохой теплопроводности биологических тканей. Наиболее чувствительны к повышению температуры ферменты, которые при нагревании разрушаются первыми, что в свою очередь приводит к замедлению биохимических реакций в клетках. При достаточной интенсивности лазерного облучения может происходить коагуляция (необратимая денатурация) белков и полное разрушение тканей.

Ударный эффект. Выделение тепла в зоне воздействия лазерного луча происходит за миллионные, и даже стомиллионные доли секунды. Мгновенное испарение частиц тканей и их быстрое объёмное расширение вызывает резкий рост давления в очаге нагревания. В результате, в жидких компонентах клеток и тканях возникает ударная волна, которая распространяется со сверхзвуковой скоростью (~1500 м/с) и способная вызвать их повреждение.

Электрические явления. Лазерное излучение по своей природе представляет собой электромагнитное поле. При достаточно большой электрической составляющей этого поля воздействие лазерного луча будет вызывать ионизацию и возбуждение атомов и молекул. В биологических тканях это может привести к избирательному разрушению химических связей в молекулах, образованию свободных радикалов и, как следствие, к различным патологическим процессам в организмах животных и человека. Предполагается, что они обуславливают химические мутации, возникновение раковых заболеваний, биологическое старение.

Перечисленные выше свойства лазерного излучения и эффекты его взаимодействия с биотканями определяют уникальные возможности применения лазеров в экспериментальной биологии и медицине.

Сфокусированный до диаметра всего в несколько микрон, лазерный луч становиться исследовательским и микрохирургическим инструментом на клеточном уровне. Облучая определённые участки хромосом можно вызвать изменение наследственности. Такой лазерный луч позволяет отщепить от макромалекулы отдельные фрагменты и «пришить» на их место новые. Использование лазера сделало технически возможным решение целого ряда задач цитологии, цитогенетики, эмбриологии и других направлений биологической науки.

Основными областями применения лазеров в медицине является хирургия, офтальмология и онкология.

В хирургии применяются СО 2 -лазеры мощностью 30 ÷ 100 Вт, работающие в непрерывном режиме. Свойства лазерного луча разрушать биологические ткани, совмещённые с коагуляцией белка, позволяет проводить бескровные рассечения. Лазерный скальпель перед традиционным скальпелем имеет ряд преимуществ. Основными проблемами хирургии является боль, кровотечение и стерильность. Эти проблемы решаются при использовании лазера очень просто: лазерное излучение, в отличие от обычного скальпеля, не может внести инфекцию, оно стерилизует рассекаемые ткани, даже если они уже инфицированы нагноением; потери крови не происходит, поскольку кровеносные сосуды мгновенно закупориваются свернувшейся кровью; лазерный скальпель не оказывает на ткань механического давления, что снижает ощущение боли. Кроме того, с помощью современных эндоскопов и гибких световодов (волоконная оптика) лазерное излучение может вводиться во внутренние полости, благодаря чему становятся возможными остановка внутреннего кровотечения и испарение нагноений без вскрытия органов. Для целей хирургии у нас в стране созданы установки «Скальпель-1» (Р = 30Вт) и «Ромашка-1» (Р = 100 Вт).

В офтальмологии используются импульсные рубиновые лазеры (длительность импульсов 30 ÷70 нс; Е = 0, 1 ÷ 0,3 Дж), которые позволяют без нарушения целостности глаза осуществлять ряд сложных операций: приваривание отслоившейся сетчатки к сосудистой оболочке глаза (офтальмокоагулятор); лечение глаукомы путём прокалывания лазерным лучом отверстия диаметром 50-100 нм, для оттока жидкости с целью снижения внутриглазного давления; лечения некоторых видов катаракт и других дефектов радужной оболочки глаза. Для лечения глаукомы была создана установка «Ятаган-1».

В онкологии лазерное излучение используется при иссечении и некротизации клеток злокачественных опухолей. При некротизации злокачественных опухолей используется избирательность поглощения лазерного излучения различными тканями. Например, некоторые пигментированные опухоли (меланома, гемангиома) поглощают лазерное излучение гораздо интенсивнее, чем окружающие ткани. При этом в микроскопическом объеме ткани молниеносно выделяется тепло с образованием ударной волны. Эти факторы вызывают разрушение злокачественных клеток. При импульсном воздействии температура тканей на глубине 4-5 мм повышается до 55-60 0 С. При использовании лазеров, работающих в непрерывном режиме, температуру можно повысить до 100 0 С. Для воздействия на опухоли используется сфокусированное лазерное излучение (d = 1,5÷3 мм на поверхности объекта) интенсивностью I = 200 ÷ 900 Вт/см 2 .

Установлено, что лазерное излучение имеет ряд преимуществ перед используемой для лечения рака кожи рентгенотерапией: существенно уменьшается радиационная нагрузка и в несколько раз уменьшаются затраты. С помощью менее интенсивного излучения можно подавлять рост раковых клеток (лазерная терапия). Для этой цели используется специальная лазерная установка «Пульсатор-1» или аргоновые лазеры мощностью до 1 Вт. Рак кожи излечивается лазером в 97% случаев.

«Лазерное излучение»

Введение

Лазерное излучение является одним из наиболее интересных научно-технических достижений ХХ века. Создание лазеров привело ко второму рождению научной и технической оптики и развитию совершенно новых отраслей промышленности. В отличие от обычных, тепловых источников излучения лазер дает свет, обладающий целым рядом особых и очень ценных свойств.
Важно, что лазерное излучение когерентно и практически монохроматично. До появления лазеров этим свойством обладали только радиоволны, излучаемые хорошо стабилизированным передатчиком. А это дало возможность освоить диапазон видимого света для осуществления передачи информации и связи, тем самым существенно увеличив количество передаваемой информации в единицу времени.
Вследствие того, что вынужденное излучение распространяется строго вдоль оси резонатора, лазерный луч расширяется слабо: его расходимость составляет несколько угловых секунд. 1
Эти перечисленные качества позволяют фокусировать лазерный луч в пятно чрезвычайно малого размера, получая в точке фокуса огромную плотность энергии. Лазерное излучение большой мощности имеет огромную температуру. Так, например, импульсный лазер мощностью 1015 Вт имеет температуру излучения около 100 миллионов градусов. Благодаря этим свойствам лазеры нашли применение в различных областях науки, техники и медицины. Очень перспективно применение лазерного излучения для космической связи, в оптических локаторах, измеряющих большие расстояния с точностью до миллиметров, для передачи телевизионных и компьютерных сигналов по оптическому волокну. Лазеры используются при считывании информации с компакт-дисков, со штрих-кодов товаров. С помощью луча лазеров малой интенсивности можно проводить хирургические операции, например «приваривать» отслоившуюся от глазного дна сетчатку, делать сосудистые операции. В обработке материалов при помощи лазера осуществляют сварку, резку, сверление очень маленьких отверстий с высокой точностью. Перспективно использование мощного лазерного излучения для осуществления управляемой термоядерной реакции. Лазеры применяются также для топографической съемки, потому что луч лазера задает идеальную прямую линию. Направление тоннеля под проливом Ла-Манш задавалось лазерным лучом. С помощью лазерного излучения получаются голографические трехмерные объемные изображения. В метрологии лазер применяется при измерении длины, скорости, давления. Создание лазеров результат использования фундаментальных физических законов в прикладных исследованиях. Оно привело к гигантскому прогрессу в различных областях техники и технологии. Создание лазера стало определяющим фактором и в развитии оптических систем передачи. Сказанным выше, определяется актуальность исследования в данной работе.
Целью данной работы является изучить лазерное излучение. Задачами данной работы являются рассмотреть:
- свойства лазерного излучения;
- краткую историю возникновения и усовершенствования лазеров;
- источники, свойства и типы лазеров;
- вредное действие лазерного излучения;
- классы безопасности лазеров и средства защиты.

1. Лазерная техника

Лазерная техника еще очень молода - ей нет и полувека. Однако за это совсем небольшое время лазер из любопытного лабораторного устройства превратился в средство научного исследования, в инструмент, применяемый в промышленности. Трудно найти такую область современной техники, где бы не работали лазеры. Их излучение используется для связи, записи и чтения информации, для точных измерений; они незаменимы в медицине хирургии и терапии. Многие учёные считают, что кардинальные изменения, которые лазер внёс в жизнь человека, - подобны последствиям промышленного применения электричества в конце XIX века.
Большие возможности лазерной технологии объясняются особыми свойствами лазерного излучения. Его природу изучает квантовая механика. Именно её законы описывают процессы, происходящие в лазере, поэтому его также называют оптическим квантовым генератором.
Таким образом, свет - это поток испускаемых атомами особых частиц - фотонов, или квантов электромагнитного излучения. Их следует представлять себе в виде отрезков волны, а не как частицы вещества. Каждый фотон несёт строго определённую порцию энергии, выброшенной атомом. 2
Излученные фотоны абсолютно идентичны, их частоты равны и фазы одинаковы. Когда они встретятся с двумя возбужденными атомами, фотонов станет 4. Потом 8, 16 и т. д. Возникнет лавина неотличимых друг от друга фотонов, образующих так называемое монохроматическое (одноцветное) когерентное излучение. Это вынужденное излучение обладает целым рядом интересных свойств.
Лазерное излучение имеет очень высокую температуру. Её величина зависит от мощности излучения и достигает порой миллионов градусов.
При этом лазер излучает энергию на одной частоте, на одной длине волны. Раньше такое монохроматическое излучение получали только в диапазоне радиоволн. Свет, испускаемый даже очень маленьким кусочком раскалённого вещества, всегда состоит из волн самой разной частоты. По этой причине в оптике никак не удавалось, например, создать узконаправленные и сфокусированные пучки излучения, которыми радиоинженеры пользуются уже не один десяток лет.
Так же, лазерное излучение очень стабильно. Электромагнитная волна, которую генерирует лазер, распространяется на многие километры не изменяясь. Её амплитуда, частота и фаза могут оставаться постоянными очень долго. Это качество называется высокой пространственной и временной когерентностью.
Эти три особенности лазерного излучения нашли применение в самых разных отраслях техники, при решении различных технологических задач. Для каждого случая можно подобрать лазер нужного типа и требуемой мощности. 3

2. Характеристика лазеров

2.1 Рождения семейства лазеров

То, как получить когерентное излучение, стало в общих чертах понятно в 1918 году когда Альберт Эйнштейн предсказал явление вынужденного излучения. Если создать среду, в которой атомы находятся в возбуждённом состоянии, и «запустить в неё слабый поток когерентных фотонов, то его интенсивность станет расти. В начале 50-х гг. российские исследователи Николай Геннадьевич Басов, Александр Михайлович Прохоров и независимо от них американский физик Чарлз Хард Таунс создали усилитель радиоволн высокой частоты на молекулах аммиака. Нужные для работы возбуждённые молекулы отбирало из потока газа электрическое поле сложной конфигурации. Новорождённое устройство получило название мазер.
В 1960 году американский физик Теодор Гарольд Мейман сконструировал первый квантовый генератор оптического диапазона лазер. Усиление света происходило в кристалле рубина прозрачной разновидности окиси алюминия с небольшой примесью хрома (на этот материал указали третья годами раньше Н.Г Басов и А.М. Прохоров). В лазере использовался охлаждаемый жидким азотом рубиновый стержень длиной около 4 см и диаметром 5 мм. Посеребренные торцы стержня служили зеркалами, одно из которых было полупрозрачным. Энергию в кристалл накачивала мощная импульсная лампа. Поток фотонов высокой энергии переводил атомы хрома в возбужденное состояние. На одном из высокоэнергетических уровней атомы задерживаются в среднем на 0,003 с время по атомным масштабам огромное. За этот период часть атомов успевает самопроизвольно излучить фотоны. Их поток, многократно пробегая между зеркалами, заставляет все возбужденные атомы излучать кванты света. В результате рождается световая вспышка - лазерный импульс мощностью в десятки тысяч ватт. Сегодня лазерные стержни изготовляют из различных материалов, но чаще всего из рубина, граната и стекла с примесью редкого металла - неодима Некоторые твердотельные лазеры (например, на гранате) генерируют сотни и тысячи импульсов в секунду. 4
И в том же 1960 году американские физики А Джэван, В Бепнет и Д. Эрриот создали газовый лазер, работающий на смеси гелия и неона. Этот лазер излучал красный свет уже не импульсами, а непрерывно. Смесь газов оказалась настолько хорошо подобранной, что гелиево-неоновые лазеры до сих пор остаются самыми распространёнными источниками когерентного света, хотя излучения удалось добиться и от множества других газов и паров. Энергию в газовую смесь накачивает тлеющий электрический разряд. Цвет луча зависит от состава газа или пара, на котором лазер работает. Аргон, например, даёт синий свет, криптон - жёлтый, ксенон и пары меди зелёный. углекислый газ и пары воды невидимые тестовые (инфракрасные) лучи.
В семейство газовых лазеров можно отнести и квантовые генераторы, в которых возбужденные молекулы не готовятся заранее, а появляются непосредственно в момент излучения. Это так называемые газодинамические и химические лазеры, развивающие колоссальную мощность в сотни киловатт и даже десятки мегаватт в непрерывном режиме.
Газодинамический лазер напоминает реактивный двигатель. Молекулы сильно нагретого газа, вылетающие из него, отдают энергию в виде светового излучения. В химическом лазере возбуждённые молекулы возникают в результате химической реакции. Самая энергичная из них - соединение атомарного фтора с водородом.
Непрерывное излучение дают и жидкостные лазеры. Рабочим веществом для них служат, например, растворы солей неодима и соединений анилина. Поскольку соединения анилина используются для окраски тканей, генераторы на их основе называют лазерами на красителях. Для более стабильной работы лазера жидкость можно пропускать через холодильник.
Самые миниатюрные лазеры - полупроводниковые: в спичечный коробок их можно поместить несколько десятков, а объём вещества, в котором происходит вынужденное излучение, не превышает тысячных долей кубического миллиметра. Энергию в полупроводник накачивает электрический ток. Больше половины его «превращается» в свет, т. е. коэффициент полезного действия этих лазеров может достигать более чем 50 %.

2.2 Типы лазеров

1) Твердотельные лазеры.
Первой твердой активной средой стал рубин – кристалл корунда Al2O3 с небольшой примесью ионов хрома Cr +++ . Сконструировал его Т. Мейман (США) в 1960. Широко применяется также стекло с примесью неодима Nd, алюмоиттриевый гранат Y 2 Al 5 O 12 с примесью хрома, неодима и редкоземельных элементов в виде стержней. Накачкой твердотельных лазеров обычно служит импульсная лампа, вспыхивающая примерно на 10–3 секунды, а лазерный импульс оказывается раза в два короче. Часть времени тратится на создание инверсной заселенности, а в конце вспышки интенсивность света становится недостаточной для возбуждения атомов и генерация прекратится. Лазерный импульс имеет сложную структуру, он состоит из множества отдельных пиков длительностью порядка 10–6 секунды, разделенных промежутками, примерно, в 10–5 секунды. В этом режиме так называемой свободной генерации мощность импульса может достигать десятков киловатт. Повысить мощность, просто усиливая свет накачки и увеличивая размеры лазерного стержня, невозможно чисто технически. Поэтому мощность лазерных импульсов повышают, уменьшая их длительность. Для этого перед одним из зеркал резонатора ставят затвор, который не позволяет генерации начаться, пока на верхний уровень не будут переброшены практически все атомы активного вещества. Затем затвор на короткое время открывается и вся накопленная энергия высвечивается в виде так называемого гигантского импульса. В зависимости от запаса энергии и длительности вспышки мощность импульса может составлять от нескольких мегаватт до десятков тераватт (1012 ватт). 5
2) Газовые лазеры.
Активной средой газовых лазеров служат газы низкого давления (от сотых долей до нескольких миллиметров ртутного столба) или их смеси, заполняющие стеклянную трубку с впаянными электродами. Первый газовый лазер на смеси гелия и неона был создан вскоре после лазера рубинового в 1960 А. Джаваном, В. Беннетом и Д. Эрриотом (США). Накачкой газовых лазеров служит электрический разряд, питаемый высокочастотным генератором. Генерация излучения ими происходит так же, как и в твердотельных лазерах, но газовые лазеры дают, как правило, непрерывное излучение. Поскольку плотность газов очень мала, длина трубки с активной средой должна быть достаточно велика, чтобы массы активного вещества хватило для получения высокой интенсивности излучения.
К газовым лазерам можно отнести также лазеры газодинамические, химические и эксимерные (лазеры, работающие на электронных переходах молекул, существующих только в возбужденном состоянии).
Газодинамический лазер похож на реактивный двигатель, в котором сгорает топливо с добавкой молекул газов активной среды. В камере сгорания молекулы газов возбуждаются, и, охлаждаясь при сверхзвуковом течении, отдают энергию в виде когерентного излучения большой мощности в инфракрасной области, которое выходит поперек газового потока.
3) Химические лазеры.
В химических лазерах (вариант газодинамического лазера) инверсия заселенности образуется за счет химических реакций. Наиболее высокую мощность развивают лазеры на реакции атомарного фтора с водородом.
4) Жидкостные лазеры.
Активной средой этих лазеров (их называют также лазерами на красителях) служат различные органические соединения в виде растворов. Первые лазеры на красителях появились в конце 60-х. Плотность их рабочего вещества занимает промежуточное место между твердым телом и газом, поэтому они генерируют довольно мощное излучение (до 20 Вт) при небольших размерах кюветы с активным веществом. Работают они как в импульсном, так и в непрерывном режиме, их накачку осуществляют импульсными лампами и лазерами. Возбужденные уровни молекул красителей имеют большую ширину, поэтому жидкостные лазеры излучают сразу несколько частот. А меняя кюветы с растворами красителей, излучение лазера можно перестраивать в очень широком диапазоне. Плавную подстройку частоты излучения осуществляют настройкой резонатора.
5) Полупроводниковые лазеры.
Этот вид оптических квантовых генераторов был создан в 1962 одновременно несколькими группами американских исследователей (Р.Холлом, М.И. Нейтеном, Т. Квистом и др.), хотя теоретическое обоснование его работы сделал Н.Г.Басов с сотрудниками в 1958. Наиболее распространенные лазерный полупроводниковый материал – арсенид галлия GaAr. 6
В соответствии с законами квантовой механики электроны в твердом теле занимают широкие энергетические полосы, состоящие из множества непрерывно расположенных уровней. Нижняя полоса, называемая валентной зоной, отделена от верхней зоны (зоны проводимости) так называемой запрещенной зоной, в которой энергетические уровни отсутствуют. В полупроводнике электронов проводимости мало, подвижность их ограничена, но под действием теплового движения отдельные электроны могут перескакивать из валентной зоны в зону проводимости, оставляя в ней пустое место – «дырку». И если электрон с энергией Eэ спонтанно возвращается обратно в зону проводимости, происходит его «рекомбинация» с дыркой, имеющей энергию Eд, которая сопровождается излучением из запрещенной зоны фотона частотой n = Eэ – Eд. Накачка полупроводникового лазера осуществляется постоянным электрическим током (при этом от 50 до почти 100% его энергии превращается в излучение); резонатором обычно служат полированные грани кристалла полупроводника.
6) Лазеры в природе.
Во Вселенной обнаружены лазеры естественного происхождения. Инверсная заселенность возникает в огромных межзвездных облаках конденсированных газов. Накачкой служат космические излучения, свет близких звезд и пр. Из-за гигантской протяженности активной среды (газовых облаков) – сотни миллионов километров – такие астрофизические лазеры не нуждаются в резонаторах: вынужденное электромагнитное излучение в диапазоне длин волн от нескольких сантиметров (Крабовидная туманность) до микрона (окрестности звезды Эта Карина) возникает в них при однократном проходе волны.

2.3 Свойства лазерного излучения

В отличие от обычных, тепловых источников излучения лазер дает свет, обладающий целым рядом особых и очень ценных свойств. 7
1. Лазерное излучение когерентно и практически монохроматично. До появления лазеров этим свойством обладали только радиоволны, излучаемые хорошо стабилизированным передатчиком. Из-за того, что вынужденное излучение распространяется строго вдоль оси резонатора, лазерный луч расширяется слабо: его расходимость составляет несколько угловых секунд.
Эти перечисленные качества позволяют фокусировать лазерный луч в пятно чрезвычайно малого размера, получая в точке фокуса огромную плотность энергии.
2. Лазерное излучение большой мощности имеет огромную температуру. Так, например, импульсный лазер мощностью порядка петаватта (1015 Вт) имеет температуру излучения около 100 миллионов градусов.
Эти уникальные свойства лазерного излучения сделали квантовые генераторы незаменимым инструментом в самых разных областях науки и техники.
1. Технологические лазеры. Мощные лазеры непрерывного действия применяются для резки, сварки и пайки деталей из различных материалов. Высокая температура излучения позволяет сваривать материалы, которые иными методами соединить нельзя (например, металл с керамикой). Высокая монохроматичность излучения позволяет сфокусировать луч в точку диаметром порядка микрона и применять его для изготовления микросхем (так называемый метод лазерного скрайбирования – снятия тонкого слоя). Для обработки деталей в вакууме или в атмосфере инертного газа лазерный луч можно вводить в технологическую камеру через прозрачное окно.
2. Лазерная связь. Появление лазеров произвело переворот в технике связи и записи информации. Существует простая закономерность: чем выше несущая частота (меньше длина волны) канала связи, тем больше его пропускная способность. Именно поэтому радиосвязь, вначале освоившая диапазон длинных волн, постепенно переходила на все более короткие длины волн. Но свет – такая же электромагнитная волна, как и радиоволны, только в десятки тысяч раз короче, поэтому по лазерному лучу можно передать в десятки тысяч раз больше информации, чем по высокочастотному радиоканалу. Лазерная связь осуществляется по оптическому волокну – тонким стеклянным нитям, свет в которых за счет полного внутреннего отражения распространяется практически без потерь на многие сотни километров. Лазерным лучом записывают и воспроизводят изображение (в том числе движущееся) и звук на компакт-дисках.
3. Лазеры в медицине. Лазерная техника широко применяется и в хирургии, и в терапии. Лазерным лучом, введенным через глазной зрачок, «приваривают» отслоившуюся сетчатку и исправляют дефекты глазного дна. Хирургические операции, производимые «лазерным скальпелем» меньше травмируют живые ткани. А лазерное излучение малой мощности ускоряет заживление ран и оказывает воздействие, аналогичное иглоукалыванию, практикуемому восточной медициной (лазерная акупунктура).
4. Лазеры в научных исследованиях. Чрезвычайно высокая температура излучения и высокая плотность его энергии дает возможность исследовать вещество в экстремальном состоянии, существующем только в недрах горячих звезд. Делаются попытки осуществить термоядерную реакцию, сжимая ампулу со смесью дейтерия с тритием системой лазерных лучей (т.н. инерционный термоядерный синтез). В генной инженерии и нанотехнологии (технологии, имеющей дело с объектами с характерными размерами 10–9 м) лазерными лучами разрезают, передвигают и соединяют фрагменты генов, биологических молекул и детали размером порядка миллионной доли миллиметра (10–9 м). Лазерные локаторы (лидары) применяются для исследования атмосферы.
5. Военные лазеры. Военное применение лазеров включает как их использование для обнаружения целей и связи, так и применение в качестве оружия. Лучами мощных химических и эксимерных лазеров наземного или орбитального базирования планируется разрушать или выводить из строя боевые спутники и самолеты противника. Созданы образцы лазерных пистолетов для вооружения экипажей орбитальных станций военного назначения.

3. Механизмы вредного воздействие лазерного излучения

Ткани и органы, которые обычно подвержены лазерному облучению это глаза и кожа. Существуют три основных типа повреждения тканей, вызванных лазерным облучением. Это тепловые эффекты, фотохимическое воздействие, а также акустические переходные эффекты (подвержены только глаза). Тепловые эффекты могут возникать при любой длине волны и являются следствием излучения или светового воздействия на охлаждающий потенциал кровотока тканей.
В воздухе, фотохимический эффекты происходят между 200 и 400 нм и ультрафиолете, а также между 400 до 470 нм фиолетовых длинах волн. Фотохимические эффекты связанны с продолжительностью и также частотой повторения излучения.
Акустические переходные эффекты, связанные с длительностью импульса, могут произойти в короткий срок импульсов (до 1 мс) в зависимости от конкретной длины волны лазера. Акустическое воздействие переходных эффектов плохо изучено, но оно может вызвать повреждение сетчатки, которая отлична от термической травмы сетчатки.
Потенциальные места повреждения глаза напрямую связаны с длиной волны лазерного излучения. Длины волн короче 300 нм или более 1400 нм, воздействуют на роговицу. Длины волн между 300 и 400 нм, воздействуют на водянистую влагу, радужную оболочку глаза, хрусталик и стекловидное тело. Длины волн от 400 нм и 1400 нм, направлены на сетчатку. 8
Вред лазера для сетчатки может быть очень большим из-за фокусного усиления (оптического усиления) от глаз, что составляет примерно 105. Это означает, что излучение от 1 мВт/см 2 через глаз будет эффективно увеличено до 100 мВт/см2, когда оно достигает сетчатки.
При термических ожогах глаза нарушается охлаждающая функция сосудов сетчатки глаза. В результате повреждающего воздействия термического фактора могут происходить кровоизлияния в стекловидное тело в следствии повреждения кровеносных сосудов.
Так как сетчатка может восстановиться от незначительных повреждений, основные ранения жёлтого пятна сетчатки может привести к временной или постоянной потере остроты зрения или к полной слепоте. Фотохимические ранения роговицы путем ультрафиолетового облучения может привести к photokeratoconjunctivitis (часто называют болезнью сварщиков или снежной слепотой). Это болезненные состояния могут длиться несколько дней с очень изнуряющими болями. Долгосрочное облучение может привести к формированию катаракты.
Общая продолжительность воздействия также влияет на травматизацию глаза. Например, если лазер видимых длин волн (400 до 700 нм), мощность луча которого составляет менее 1,0 МВт, а время экспозиции составляет менее 0,25 секунд (время за которое человек закроет глаз), никаких повреждений на сетчатке глаза не будет. Класс 1, 2А и 2-лазеров подпадают под эту категорию и, как правило, не могут навредить сетчатке. К сожалению, при прямом или отраженном попадании лазера класса 3A, 3B, или 4, и диффузных отражений лазеров выше 4 класса могут вызывать повреждения, прежде чем человек сможет рефлекторно закрыть глаза.
Для импульсных лазеров, длительности импульса также влияет на потенциальный вред для глаз. Импульсы менее чем на 1 мс при попадании на сетчатку может вызвать акустические переходные эффекты, что приводит к существенному ущербу и кровотечениям в дополнение к ожидаемым тепловым повреждениям. Многие импульсные лазеров в настоящее время имеют время импульса менее 1 пикосекунды.
Стандарт ANSI определяет максимально допустимую мощность воздействия лазера на глаз без каких либо последствий (под воздействием конкретных условий).
Травмы кожи от лазеров в первую очередь, делятся на две категории: тепловые травмы (ожоги) от острого воздействия мощных лазерных лучей и фотохимического индуцированного повреждения от хронического воздействия рассеянного ультрафиолетового лазерного излучения. Тепловой травмы могут возникнуть в результате прямого контакта с лучом или его зеркальным отражением. Эти травмы хоть и болезненны но, как правило, не являются серьезными и, обычно, легко предотвращаются при надлежащем контроле над лазерным лучом. Фотохимические повреждения могут произойти с течением времени от облучения прямого света, зеркальных отражений, или даже диффузного отражения. Эффект может быть незначительными но могут быть и серьезные ожоги, а длительное воздействие может способствовать формированию рака кожи. Хорошие защитные очки и одежда могут быть необходимы для защиты кожи и глаз. При работе с лазерами необходимо иметь очки, защищающие от лазерного излучения. Защитные очки нужны даже для лазера 15мВт, так как без них глаза сильно устают.
Степень защиты очков от лазерного излучение измеряется в OD (Optical Density). Оптическая плотность показывает, во сколько раз очки ослабляют свет. Единица означает «в 10 раз». Соответственно, «оптическая плотность 3» означает ослабление в 1000 раз, а 6 - в миллион. Правильная оптическая плотность для видимого лазера такова, чтобы после очков от прямого попадания лазера осталась мощность, соответствующая классу II (максимум где-то 1 мВт).
От красного и некоторых инфракрасных лазеров защищают отечественные очки марки ЗН-22 С3-С22. Они похожи на очки сварщика, но имеют стекла голубого цвета. В связи с широким применением лазерных источников излучения в научных исследованиях, промышленности, медицинский связи и др. возникает необходимость сохранения здоровья людей эксплуатирующих различные лазерные установки. 9
Лазер - источник когерентного излучения, то есть согласованного во времени и пространстве движения фотонов в виде выделенного луча. Характер воздействия на зрительный аппарат и степень поражающего действия лазера зависят от плотности энергии излучения, длины волны излучения (импульсное или непрерывное). Характер повреждения кожи зависит от цвета кожи, например пигментированная кожа значительно сильнее поглощает лазерное излучение, чем не пигментированная. Светлая кожа отражает до 40 % падающего на нее излучения. При действии лазерного излучения обнаружен ряд нежелательных изменений со стороны органов дыхания, пищеварения, сердечнососудистой и эндокринной систем. В некоторых случаях эти общие клинические симптомы носят довольно стойкий характер, являясь результатом влияния на нервную систему.
Охарактеризуем действие наиболее биологически опасных спектральных диапазонов лазерного облучения. В инфракрасной области энергия наиболее «коротких» волн (0,7-1,3 мкм) может проникать на сравнительно большую глубину в кожу и прозрачные среды глаза. Глубина проникновения зависит от длины волны падающего излучения. Участок высокой прозрачности на длинах волн от 0,75 до 1,3 мкм имеет максимум прозрачности в районе 1,1 мкм. На этой длине волны 20 % энергии, падающей на поверхностный слой кожи, проникает в кожу на глубину до 5 мм. При этом в сильно пигментированной коже глубина проникновения может быть еще больше. И, тем не менее, кожа человека достаточно хорошо противодействует инфракрасному излучению, так как она способна рассеивать тепло благодаря кровообращению и понижать температуру ткани вследствие испарения влаги с поверхности.
Но значительно труднее от инфракрасного облучения защитить глаза, в них тепло практически не рассеивается, и хрусталик, фокусирующий излучение на сетчатке, усиливает эффект биологического воздействия. Все это заставляет при работе с лазерами особое внимание обращать на защиту глаз. Роговая оболочка глаза прозрачна для излучения в интервале длин волн 0,75-1,3 мкм и становится практически непрозрачной только для длин волн более 2 мкм.
Степень теплового поражения роговицы зависит от поглощенной дозы облучения, причем травмируется главным образом поверхностный, тонкий слой. Если в интервале волн 1,2-1,7 мкм величина энергии облучения превышает минимальную дозу облучения, то может произойти полное разрушение защитного эпителиального слоя. Ясно, что подобное перерождение тканей в области, положенной непосредственно за зрачком, серьезно сказывается на состоянии органа зрения.
Следует иметь в виду, что радужная оболочка, отличающаяся высокой степенью пигментации, поглощает излучение практически всего инфракрасного диапазона. Особенно сильно подвержена она действию излучения длиной волны 0,8-1,3 мкм, поскольку излучение почти не задерживается роговицей и водянистой жидкостью передней камеры глаза.
Минимальной величиной плотности энергии облучения в интервале волн 0,8-1,1 мкм, способной вызвать поражение радужной оболочки, считают 4,2 Дж/см 2 . Одновременное поражение роговой и радужной оболочек всегда носит острый характер, а поэтому оно наиболее опасно. 10
Поглощение средами глаза энергии излучения в инфракрасной области, падающей на роговую оболочку, растет с увеличением длины волны. При длинах волн 1,4-1,9 мкм роговица и передняя камера глаза поглощают практически все падающее излучение, а при длинах волн выше 1,9 мкм роговица становится единственным поглотителем энергии излучения.
При оценке допустимых уровней лазерной энергии необходимо учитывать суммарный эффект, производимый на прозрачные среды глаза, сетчатку и сосудистую оболочку. Оценим действие лазерного излучения на сетчатую оболочку глаза.
Прогнозируя возможность опасности лазерного облучения, необходимо учитывать:
и т.д.................

Устройство лазера и свойства вынужденного излучения обуславливают отличие лазерного излучения от излучения обычных источников света. Лазерное излучение (ЛИ) характеризуется следующими важнейшими свойствами.

1. Высококогерентностъ. Излучение является высококогерентным, что обусловлено свойствами вынужденного индуцированного излучения. При этом имеет место не только временная, но и пространственная когерентность: разность фаз в двух точках плоскости, перпендикулярной направлению распространения, сохраняется постоянной (рис. а) (в следствии пространственной когерентности излучение может быть сфокусировано в очень малом объеме).

2. Монохроматичность. Лазерное излучение является в высокой степени монохроматическим, то есть содержит волны практически одинаковой частоты (фотоны имеют одинаковую энергию). Это обусловлено тем, что вынужденное излучение связано с дублированием фотонов (каждый индуцированный фотон полностью подобен первоначальному). При этом формируется электромагнитная волна постоянной частоты. Ширина спектральной линии составляет 0,01 нм. На рис. в приведено схематическое сравнение ширины линии лазерного луча и луча обычного света.

До появления лазеров излучение с некоторой степенью монохроматичности удавалось получить с помощью приборов – монохроматоров, выделяющих из сплошного спектра узкие спектральные интервалы (узкие полосы длин волн), однако мощность света в таких полосах мала.

3. Высокая мощность. С помощью лазера можно обеспечить очень высокую мощность монохроматического излучения - до 10 5 Вт в непрерывном режиме. Мощность импульсных лазеров на несколько порядков выше. Так неодимовый лазер генерирует импульс с энергией Е = 75 Дж, длительность которого t = 3·10 –12 с. Мощность в импульсе равна Р = E/t = 2,5·10 13 Вт (для сравнения: мощность ГЭС Р ~ 10 9 Вт).

4. Высокая интенсивность. В импульсных лазерах интенсивность лазерного излучения очень высока и может достигать I = 10 14 -10 16 Вт/см 2 (ср. интенсивность солнечного света вблизи земной поверхности I = 0,1 Вт/см 2).

5. Высокая яркость. У лазеров, работающих в видимом диапазоне, яркость лазерного излучения (сила света с единицы поверхности) очень велика. Даже самые слабые лазеры имеют яркость 10 15 кд/м 2 (для сравнения: яркость Солнца L ~ 10 9 кд/м 2).

6. Давление. Лазерный луч при падении на поверхность оказывает давление (р). При полном поглощении лазерного излучения, падающего перпендикулярно поверхности, величина создается давление р = I /с, где I – интенсивность излучения, с – скорость света в вакууме. При полном отражении величина давления в два раза больше. При интенсивности I = 10 14 Вт/см 2 = 10 18 Вт/м 2 , р = 3,3·10 9 Па = 33000 атм.

7. Малый угол расходимости в пучке. Коллимированностъ. Излучение является коллимированным, то есть все лучи в пучке почти параллельны друг другу (рис.6). На большом расстоянии лазерный пучок лишь незначительно увеличивается в диаметре (для большинства лазеров угол расходимости составляет 1 угловую минуту или меньше). Так как угол расходимости мал, то интенсивность лазерного пучка слабо убывает с расстоянием. Остронаправленность позволяет передавать сигналы на огромные расстояния при малом ослаблении их интенсивности.

8. Поляризованностъ. Лазерное излучение полностью поляризовано.

1. Прохождение монохроматического света через прозрачную среду.

2. Создание инверсной населенности. Способы накачки.

3. Принцип действия лазера. Типы лазеров.

4. Особенности лазерного излучения.

5. Характеристики лазерного излучения, применяемого в медицине.

6. Изменения свойств ткани и ее температуры под действием непрерывного мощного лазерного излучения.

7. Использование лазерного излучения в медицине.

8. Основные понятия и формулы.

9. Задачи.

Мы знаем, что свет испускается отдельными порциями - фотонами, каждый из которых возникает в результате излучательного перехода атома, молекулы или иона. Естественный свет - это совокупность огромного числа таких фотонов, различающихся по частоте и фазе, испущенных в случайные моменты времени в случайных направлениях. Получение мощных пучков монохроматического света с помощью естественных источников - задача практически неразрешимая. В то же время потребность в таких пучках ощущалась как физиками, так и специалистами многих прикладных наук. Создание лазера позволило решить эту задачу.

Лазер - устройство, генерирующее когерентные электромагнитные волны за счет вынужденного излучения микрочастиц среды, в которой создана высокая степень возбуждения одного из энергетических уровней.

Лазер (LASER Light Amplification by Stimulated of Emission Radiation) - усиление света с помощью вынужденного излучения.

Интенсивность лазерного излучения (ЛИ) во много раз превосходит интенсивность естественных источников света, а расходимость лазерного луча менее одной угловой минуты (10 -4 рад).

31.1. Прохождение монохроматического света через прозрачную среду

В лекции 27 мы выяснили, что прохождение света через вещество сопровождается как фотонным возбуждением его частиц, так и актами вынужденного излучения. Рассмотрим динамику этих процессов. Пусть в среде распространяется монохроматический свет, частота которого (ν) соответствует переходу частиц этой среды с основного уровня (E 1) на возбужденный (Е 2):

Фотоны, попадающие в частицы, находящиеся в основном состоянии, будут поглощаться, а сами частицы будут переходить в возбужденное состояние Е 2 (см. рис. 27.4). Фотоны, которые попадают в возбужденные частицы, инициируют вынужденное излучение (см. рис. 27.5). При этом происходит удвоение фотонов.

В состоянии теплового равновесия соотношение между числом возбужденных (N 2) и невозбужденных (N 1) частиц подчиняется распределению Больцмана:

где k - постоянная Больцмана, T - абсолютная температура.

При этом N 1 >N 2 и поглощение доминирует над удвоением. Следовательно, интенсивность выходящего света I будет меньше интенсивности падающего света I 0 (рис. 31.1).

Рис. 31.1. Ослабление света, проходящего через среду, в которой степень возбуждения менее 50 % (N 1 > N 2)

По мере поглощения света степень возбуждения будет расти. Когда она достигнет 50 % (N 1 = N 2), между поглощением и удвоением установится равновесие, так как вероятности попадания фотонов в возбужденную и невозбужденную частицы станут одинаковыми. Если освещение среды прекратится, то через некоторое время среда вернется в начальное состояние, соответствующее распределению Больцмана (N 1 > N 2). Сделаем предварительный вывод:

При освещении среды монохроматическим светом (31.1) невозможно добиться такого состояния среды, при котором степень возбуждения превышает 50 %. И все-таки давайте рассмотрим вопрос о прохождении света через среду, в которой каким-то способом достигнуто состояние N 2 > N 1 . Такое состояние называется состоянием с инверсной населенностью (от лат. inversio - переворачивание).

Инверсная населенность - такое состояние среды, при котором число частиц на одном из верхних уровней больше, чем на нижнем.

В среде с инверсной населенностью вероятность попадания фотона в возбужденную частицу больше, чем в невозбужденную. Поэтому процесс удвоения доминирует над процессом поглощения и имеет место усиление света (рис. 31.2).

По мере прохождения света через среду с инверсной населенностью степень возбуждения будет снижаться. Когда она достигнет 50%

Рис. 31.2. Усиление света, проходящего через среду с инверсной населенностью (N 2 > N 1)

(N 1 = N 2), между поглощением и удвоением установится равновесие и эффект усиления света исчезнет. Если освещение среды прекратится, то через некоторое время среда вернется в состояние, соответствующее распределению Больцмана (N 1 > N 2).

Если вся эта энергия выделится в излучательных переходах, то мы получим световой импульс огромной мощности. Правда, он еще не будет обладать требуемой когерентностью и направленностью, но будет в высокой степени монохроматичен (hv = E 2 - E 1). Это еще не лазер, но уже нечто близкое.

31.2. Создание инверсной населенности. Способы накачки

Так можно ли добиться инверсной населенности? Оказывается, можно, если использовать три энергетических уровня со следующей конфигурацией (рис. 31.3).

Пусть среда освещается мощной вспышкой света. Часть спектра излучения будет поглощена в переходе с основного уровня Е 1 на широкий уровень Е 3 . Напомним, что широким является энергетический уровень с малым временем релаксации. Поэтому большинство частиц, попавших на уровень возбуждения Е 3 , безызлучательно переходит на узкий метастабильный уровень Е 2 , где происходит их накопление. Вследствие узости этого уровня лишь малая доля фотонов вспышки

Рис. 31.3. Создание инверсной населенности на метастабильном уровне

способна вызвать вынужденный переход Е 2 → Е 1 . Этим и обеспечиваются условия для создания инверсной населенности.

Процесс создания инверсной населенности называется накачкой. В современных лазерах применяются различные виды накачки.

Оптическая накачка прозрачных активных сред использует импульсы света от внешнего источника.

Электроразрядная накачка газовых активных сред использует электрический разряд.

Инжекционная накачка полупроводниковых активных сред использует электрический ток.

Химическая накачка активной среды из смеси газов использует энергию химической реакции между компонентами смеси.

31.3. Принцип действия лазера. Типы лазеров

Функциональная схема лазера показана на рис. 31.4. Рабочее тело (активная среда) представляет собой длинный узкий цилиндр, торцы которого закрыты двумя зеркалами. Одно из зеркал (1) полупрозрачно. Такая система называется оптическим резонатором.

Система накачки переводит частицы с основного уровня Е 1 на поглощательный уровень Е 3 , откуда они безызлучательно переходят на метастабильный уровень Е 2 , создавая его инверсную населенность. После этого начинаются спонтанные излучательные переходы Е 2 → Е 1 с испусканием монохроматических фотонов:

Рис. 31.4. Схематическое устройство лазера

Фотоны спонтанного излучения, испущенные под углом к оси резонатора, выходят через боковую поверхность и в процессе генерации не участвуют. Их поток быстро иссякает.

Фотоны, которые после спонтанного излучения движутся вдоль оси резонатора, многократно проходят через рабочее тело, отражаясь от зеркал. При этом они взаимодействуют с возбужденными частицами, инициируя вынужденное излучение. За счет этого происходит «лавинообразное» нарастание индуцированных фотонов, движущихся в том же направлении. Многократно усиленный поток фотонов выходит через полупрозрачное зеркало, создавая мощный пучок почти параллельных когерентных лучей. Фактически лазерное излучение порождается первым спонтанным фотоном, который движется вдоль оси резонатора. Это и обеспечивает когерентность излучения.

Таким образом, лазер преобразует энергию источника накачки в энергию монохроматического когерентного света. Эффективность такого преобразования, т.е. КПД, зависит от типа лазера и лежит в диапазоне от долей процента до нескольких десятков процентов. У большинства лазеров КПД составляет 0,1-1 %.

Типы лазеров

Первый созданный лазер (1960 г.) использовал в качестве рабочего тела рубин и оптическую систему накачки. Рубин - это кристаллическая окись алюминия А1 2 О 3 , содержащая около 0,05 % атомов хрома (именно хром придает рубину розовый цвет). Атомы хрома, внедренные в кристаллическую решетку, являются активной средой

с конфигурацией энергетических уровней, изображенной на рис. 31.3. Длина волны излучения рубинового лазера равна λ = 694,3 нм. Затем появились лазеры, использующие другие активные среды.

В зависимости от типа рабочего тела лазеры делятся на газовые, твердотельные, жидкостные, полупроводниковые. В твердотельных лазерах активный элемент обычно изготавливается в виде цилиндра, длина которого много больше его диаметра. Газовые и жидкие активные среды помещают в цилиндрическую кювету.

В зависимости от способа накачки можно получить непрерывную и импульсную генерацию лазерного излучения. При непрерывной системе накачки инверсия населенности поддерживается длительное время за счет внешнего источника энергии. Например, непрерывное возбуждение электрическим разрядом в газовой среде. При импульсной системе накачки инверсия населенности создается в импульсном режиме. Частота следования импульсов от 10 -3

Гц до 10 3 Гц.

31.4. Особенности лазерного излучения

Лазерное излучение по своим свойствам значительно отличается от излучения обычных источников света. Отметим его характерные особенности.

1. Когерентность. Излучение является высококогерентным, что обусловлено свойствами вынужденного излучения. При этом имеет место не только временная, но и пространственная когерентность: разность фаз в двух точках плоскости, перпендикулярной направлению распространения, сохраняется постоянной (рис. 31.5, а).

2. Коллимированность. Лазерное излучение является коллимированным, т.е. все лучи в пучке почти параллельны друг другу (рис. 31.5, б). На большом расстоянии лазерный пучок лишь незначительно увеличивается в диаметре. Так как угол расходимости φ мал, то интенсивность лазерного пучка слабо убывает с расстоянием. Это позволяет передавать сигналы на огромные расстояния при малом ослаблении их интенсивности.

3. Монохроматичность. Лазерное излучение является в высокой степени монохроматическим, т.е. содержит волны практически одинаковой частоты (ширина спектральной линии составляет Δλ ≈0,01 нм). На

рисунке 31.5, в приведено схематическое сравнение ширины линии лазерного луча и луча обычного света.

Рис. 31.5. Когерентность (а), коллимированность (б), монохроматичность (в) лазерного излучения

До появления лазеров излучение с некоторой степенью монохроматичности удавалось получить с помощью приборов - монохроматоров, выделяющих из сплошного спектра узкие спектральные интервалы (узкие полосы длин волн), однако мощность света в таких полосах мала.

4. Высокая мощность. С помощью лазера можно обеспечить очень высокую мощность монохроматического излучения - до 10 5 Вт в непрерывном режиме. Мощность импульсных лазеров на несколько порядков выше. Так, неодимовый лазер генерирует импульс с энергией Е = 75 Дж, длительность которого t = 3х10 -12 с. Мощность в импульсе равна Р = Е/t = 2,5х10 13 Вт (для сравнения: мощность ГЭС составляет Р ~10 9 Вт).

5. Высокая интенсивность. В импульсных лазерах интенсивность лазерного излучения очень высока и может достигать I = 10 14 -10 16 Вт/см 2 (ср. интенсивность солнечного света вблизи земной поверхности I = 0,1 Вт/см 2).

6. Высокая яркость. У лазеров, работающих в видимом диапазоне, яркость лазерного излучения (сила света с единицы поверхности) очень велика. Даже самые слабые лазеры имеют яркость 10 15 кд/м 2 (для сравнения: яркость Солнца L ~ 10 9 кд/м 2).

7. Давление. При падении лазерного луча на поверхность тела создается давление (Д). При полном поглощении лазерного излучения, падающего перпендикулярно поверхности, создается давление Д = I/c, где I -интенсивность излучения, с - скорость света в вакууме. При полном отражении величина давления в два раза больше. Для интенсивности I = 10 14 Вт/см 2 = 10 18 Вт/м 2 ; Д = 3,3х10 9 Па = 33 000 атм.

8. Поляризованность. Лазерное излучение полностью поляризовано.

31.5. Характеристики лазерного излучения, применяемого в медицине

Длина волны излучения

Длины волн излучения (λ) медицинских лазеров лежат в диапазоне 0,2 -10 мкм, т.е. от ультрафиолетовой до дальней инфракрасной области.

Мощность излучения

Мощность излучения (P) медицинских лазеров варьируется в широких пределах, определяемых целями применения. У лазеров с непрерывной накачкой Р = 0,01-100 Вт. Импульсные лазеры характеризуются мощностью в импульсе Р и и длительностью импульса τ и

Для хирургических лазеров Р и = 10 3 -10 8 Вт, а длительность импульса т и = 10 -9 -10 -3 с.

Энергия в импульсе излучения

Энергия одного импульса лазерного излучения (Е и) определяется соотношением Е и = Р и -т и, где т и - длительность импульса излучения (обычно т и = 10 -9 -10 -3 с). Для хирургических лазеров Е и = 0,1-10 Дж.

Частота следования импульсов

Эта характеристика (f) импульсных лазеров показывает количество импульсов излучения, генерируемых лазером за 1 с. Для терапевтических лазеров f = 10-3 000 Гц, для хирургических f = 1-100 Гц.

Средняя мощность излучения

Эта характеристика (Р ср) импульсно-периодических лазеров показывает, какую энергию лазер излучает за 1 с, и определяется следующим соотношением:

Интенсивность (плотность мощности)

Эта характеристика (I) определяется как отношение мощности лазерного излучения к площади поперечного сечения пучка. Для непрерывных лазеров I = P/S. В случае импульсных лазеров различают интенсивность в импульсе I и = P и /S и среднюю интенсивность I ср = Р ср /S.

Интенсивность хирургических лазеров и давление, создаваемое их излучением, имеют следующие значения:

для непрерывных лазеров I ~ 10 3 Вт/см 2 , Д = 0,033 Па;

для импульсных лазеров I и ~ 10 5 -10 11 Вт/см 2 , Д = 3,3 - 3,3х10 6 Па.

Плотность энергии в импульсе

Эта величина (W) характеризует энергию, которая приходится на единицу площади облучаемой поверхности за один импульс и определяется соотношением W = E и /S, где S (см 2) - площадь светового пятна (т.е. поперечного сечения лазерного луча) на поверхности биоткани. У лазеров, используемых в хирургии, W ≈ 100 Дж/см 2 .

Параметр W можно рассматривать как дозу облучения D за 1 импульс.

31.6. Изменения свойств ткани и ее температуры под действием непрерывного мощного лазерного излучения

Изменение температуры и свойств ткани

под действием непрерывного лазерного излучения

Поглощение мощного лазерного излучения биологической тканью сопровождается выделением теплоты. Для расчета выделяющейся теплоты используют специальную величину - объемную плотность теплоты (q).

Выделение теплоты сопровождается повышением температуры и в тканях протекают следующие процессы:

при 40-60°С имеют место активация ферментов, образование отеков, изменение и в зависимости от времени действия гибель клеток денатурация протеина, начало коагуляции и некрозы;

при 60-80°С - денатурация коллагена, дефекты мембран; при 100°С - обезвоживание, выпаривание тканевой воды; свыше 150°С - обугливание;

свыше 300°С - выпаривание ткани, газообразование. Динамика протекания этих процессов изображена на рис. 31.6.

Рис. 31.6. Динамика изменения температуры ткани под воздействием непрерывного лазерного излучения

1 фаза. Сначала температура ткани повышается от 37 до 100 °С. В этом диапазоне температур термодинамические свойства ткани остаются практически неизменными, и происходит линейный рост температуры со временем (α = const и I = const).

2 фаза. При температуре 100 °С начинается выпаривание тканевой воды, и до окончания этого процесса температура остается постоянной.

3 фаза. После выпаривания воды температура вновь начинает расти, но медленнее, чем на участке 1, так как обезвоженная ткань поглощает энергию слабее нормальной.

4 фаза. По достижении температуры Т ≈ 150 °С начинается процесс обугливания и, следовательно, «почернения» биоткани. При этом коэффициент поглощения α возрастает. Поэтому наблюдается нелинейный, ускоряющийся со временем рост температуры.

5 фаза. По достижении температуры Т ≈ 300 °С начинается процесс испарения обезвоженной обугленной биоткани и рост температуры вновь прекращается. Именно в этот момент лазерный луч рассекает (удаляет) ткань, т.е. становится скальпелем.

Степень повышения температуры зависит от глубины залегания ткани (рис. 31.7).

Рис. 31.7. Процессы, протекающие в облучаемых тканях на различной глубине: а - в поверхностном слое ткань нагревается до нескольких сотен градусов и испаряется; б - мощность излучения, ослабленного верхним слоем, недостаточна для испарения ткани. Происходит коагуляция ткани (иногда совместно с обугливанием - черная жирная линия); в - происходит нагревание ткани вследствие передачи теплоты из зоны (б)

Протяженности отдельных зон определяются как характеристиками лазерного излучения, так и свойствами самой ткани (в первую очередь коэффициентами поглощения и теплопроводности).

Воздействие мощного сфокусированного пучка лазерного излучения сопровождается и возникновением ударных волн, которые могут стать причиной механического повреждения прилегающих тканей.

Абляция ткани под воздействием мощного импульсного лазерного излучения

При воздействии на ткань коротких импульсов лазерного излучения с высокой плотностью энергии реализуется другой механизм рассечения и удаления биоткани. В этом случае происходит очень быстрый нагрев тканевой жидкости до температуры Т > Т кип. При этом тканевая жидкость оказывается в метастабильном перегретом состоянии. Затем происходит «взрывное» вскипание тканевой жидкости, которое сопровождается удалением ткани без обугливания. Это явление называется абляцией. Абляция сопровождается генерацией механических ударных волн, способных вызвать механическое повреждение тканей в окрестностях зоны лазерного воздействия. Этот факт необходимо учитывать при выборе параметров импульсного лазерного излучения, например при шлифовке кожи, сверлении зубов или при лазерной коррекции остроты зрения.

31.7. Использование лазерного излучения в медицине

Процессы, характеризующие взаимодействие лазерного излучения (ЛИ) с биообъектами, можно разделить на 3 группы:

невозмущающее воздействие (не оказывающее заметного действия на биообъект);

фотохимическое действие (возбужденная лазером частица либо сама принимает участие в соответствующих химических реакциях, либо передает свое возбуждение другой частице, участвующей в химической реакции);

фоторазрушение (за счет выделения тепла или ударных волн).

Лазерная диагностика

Лазерная диагностика представляет собой невозмущающее воздействие на биообъект, использующее когерентность лазерного излучения. Перечислим основные методы диагностики.

Интерферометрия. При отражении лазерного излучения от шероховатой поверхности возникают вторичные волны, которые интерферируют между собой. В результате образуется картина темных и светлых пятен (спеклов), расположение которых дает информацию о поверхности биообъекта (метод спеклоинтерферометрии).

Голография. С помощью лазерного излучения получают 3-мерное изображение объекта. В медицине этот метод позволяет получать объемные изображения внутренних полостей желудка, глаза и т.д.

Рассеяние света. При прохождении остронаправленного лазерного пучка через прозрачный объект происходит рассеяние света. Регистрация угловой зависимости интенсивности рассеянного света (метод нефелометрии) позволяет определять размеры частиц среды (от 0,02 до 300 мкм) и степень их деформации.

При рассеянии может изменяться поляризация света, что также используется в диагностике (метод поляризационной нефелометрии).

Эффект Доплера. Этот метод основан на измерении доплеровского сдвига частоты ЛИ, который возникает при отражении света даже от медленно движущихся частиц (метод аненометрии). Таким способом измеряется скорость кровотока в сосудах, подвижность бактерий и т.д.

Квазиупругое рассеяние. При таком рассеянии происходит незначительное изменение длины волны зондирующего ЛИ. Причина этого - изменение в процессе измерения рассеивающих свойств (конфигурации, конформации частиц). Временные изменения параметров рассеивающей поверхности проявляются в изменении спектра рассеяния по сравнению со спектром подающего излучения (спектр рассеяния либо уширяется, либо в нем появляются дополнительные максимумы). Данный метод позволяет получать информацию о меняющихся характеристиках рассеивателей: коэффициенте диффузии, скорости направленного транспорта, размерах. Так осуществляется диагностика макромолекул белков.

Лазерная масс-спектроскопия. Этот метод используют для исследования химического состава объекта. Мощные пучки лазерного излучения испаряют вещество с поверхности биообъекта. Пары подвергают масс-спектральному анализу, по результатам которого судят о составе вещества.

Лазерный анализ крови. Лазерный луч, пропускаемый через узкий кварцевый капилляр, по которому прокачивается специально обработанная кровь, вызывает флуоресценцию ее клеток. Флуоресцентное свечение затем улавливается чувствительным датчиком. Это свечение специфично для каждого типа клеток, проходящих поодиночке через сечение лазерного луча. Подсчитывается общее число клеток в заданном объеме крови. Определяются точные количественные показатели по каждому типу клеток.

Метод фоторазрушения. Его используют для исследования поверхностного состава объекта. Мощные пучки ЛИ позволяют брать микропробы с поверхности биообъектов путем испарения вещества и последующего масс-спектрального анализа этого пара.

Использование лазерного излучения в терапии

В терапии используются низкоинтенсивные лазеры (интенсивность 0,1-10 Вт/см 2). Низкоинтенсивное излучение не вызывает заметного деструктивного действия на ткани непосредственно во время облучения. В видимой и ультрафиолетовой областях спектра эффекты облучения обусловлены фотохимическими реакциями и не отличаются от эффектов, вызываемых монохроматическим светом, полученным от обычных некогерентных источников. В этих случаях лазеры являются просто удобными монохроматическими источниками света, обеспечи-

Рис. 31.8. Схема применения лазерного источника для внутрисосудистого облучения крови

вающими точную локализацию и дозировку воздействия. В качестве примера на рис. 31.8 приведена схема использования источника лазерного излучения для внутрисосудистого облучения крови у больных с сердечной недостаточностью.

Ниже указаны наиболее распространенные методы лазеротерапии.

Терапия с помощью красного света. Излучение Не-Ne лазера с длиной волны 632,8 нм используется с противовоспалительной целью для лечения ран, язв, ишемической болезни сердца. Лечебный эффект связан с влиянием света этой длины волны на пролиферативную активность клетки. Свет выступает в роли регулятора клеточного метаболизма.

Терапия с помощью синего света. Лазерное излучение с длиной волны в синей области видимого света используется, например, для лечения желтухи новорожденных. Это заболевание - следствие резкого возрастания в организме концентрации билирубина, который имеет максимум поглощения в синей области. Если облучать детей лазерным излучением такого диапазона, то билирубин распадается, образуя водорастворимые продукты.

Лазерофизиотерапия - использование лазерного излучения при сочетании с различными методами электрофизиотерапии. Некоторые лазеры имеют магнитные насадки для сочетанного действия лазерного излучения и магнитного поля - магнитолазеротерапии. К ним относится магнито-инфракрасный лазерный терапевтический аппарат «Мильта».

Эффективность лазеротерапии увеличивается при сочетанном воздействии с лекарственными веществами, предварительно нанесенными на облучаемую зону (лазерофорез).

Фотодинамическая терапия опухолей. Фотодинамическая терапия (ФДТ) используется для удаления опухолей, доступных для облучения светом. ФДТ основана на применении локализующихся в опухолях фотосенсибилизаторов, повышающих чувствительность тканей при их

последующем облучении видимым светом. Разрушение опухолей при ФДТ основано на трех эффектах: 1) прямое фотохимическое уничтожение клеток опухоли; 2) повреждение кровеносных сосудов опухоли, приводящее к ишемии и гибели опухоли; 3) возникновение воспалительной реакции, мобилизирующей противоопухолевую иммунную защиту тканей организма.

Для облучения опухолей, содержащих фотосенсибилизаторы, используется лазерное излучение с длиной волны 600-850 нм. В этой области спектра глубина проникновения света в биологические ткани максимальна.

Фотодинамическая терапия применяется при лечении опухолей кожи, внутренних органов: легких, пищевода (при этом к внутренним органам лазерное излучение доставляется с помощью световодов).

Использование лазерного излучения в хирургии

В хирургии высокоинтенсивные лазеры используются для рассечения тканей, удаления патологических участков, остановки кровотечения, сваривания биотканей. Выбирая должным образом длину волны излучения, его интенсивность и длительность воздействия, можно получать различные хирургические эффекты. Так, для разрезания биологических тканей используется сфокусированный луч непрерывного СО 2 -лазера, имеющего длину волны λ = 10,6 мкм, мощность 2х10 3 Вт/см 2 .

Применение лазерного луча в хирургии обеспечивает избирательное и контролируемое воздействие. Лазерная хирургия имеет ряд преимуществ:

Бесконтактность, дающую абсолютную стерильность;

Селективность, позволяющую выбором длины волны излучения дозированно разрушать патологические ткани, не затрагивая окружающие здоровые ткани;

Бескровность (за счет коагуляции белков);

Возможность микрохирургических воздействий, благодаря высокой степени фокусировки луча.

Укажем некоторые области хирургического применения лазеров.

Лазерная сварка тканей. Соединение рассеченных тканей представляет собой необходимый этап многих операций. На рисунке 31.9 показано, как сваривание одного из стволов крупного нерва осуществляется в контактном режиме с использованием припоя, который

Рис. 31.9. Сваривание нерва при помощи лазерного луча

каплями из пипетки подается по месту лазирования.

Разрушение пигментированных участков. Лазеры, работающие в импульсном режиме, используются для разрушения пигментированных участков. Данный метод (фототермолиз) используется для лечения ангиом, татуировок, склеротических бляшек в кровеносных сосудах и т.п.

Лазерная эндоскопия. Внедрение эндоскопии произвело коренной переворот в оперативной медицине. Чтобы избежать больших открытых операций, лазерное излучение доставляется к месту воздействия с помощью волоконно-оптических световодов, которые позволяют подводить лазерное излучение к биотканям внутренних полых органов. При этом значительно снижается риск инфицирования и возникновения послеоперационных осложнений.

Лазерный пробой. Короткоимпульсные лазеры в сочетании со световодами применяют для удаления бляшек в сосудах, камней в желчном пузыре и почках.

Лазеры в офтальмологии. Использование лазеров в офтальмологии позволяет выполнять бескровные оперативные вмешательства без нарушения целостности глазного яблока. Это операции на стекловидном теле; приваривание отслоившейся сетчатки; лечение глаукомы путем «прокалывания» лазерным лучом отверстий (диаметром 50÷100 мкм) для оттока внутриглазной жидкости. Послойная абляция тканей роговицы применяется при коррекции зрения.

31.8. Основные понятия и формулы

Окончание таблицы

31.9. Задачи

1. В молекуле фенилаланина разница энергий в основном и возбужденном состояниях составляет ΔЕ = 0,1 эВ. Найти соотношение между заселенностями этих уровней при Т = 300 К.

Ответ: n = 3,5*10 18 .

Содержание статьи

ЛАЗЕР (оптический квантовый генератор)–устройство, генерирующее когерентные и монохроматические электромагнитные волны видимого диапазона за счет вынужденного испускания или рассеяния света атомами (ионами, молекулами) активной среды. Слово «лазер» – аббревиатура слов английской фразы «Light Amplification by Stimulated Emission ofRadiation» – усиление света вынужденным излучением. Рассмотрим эти понятия подробнее.

Основы теории излучения.

Из законов квантовой механики (см . КВАНТОВАЯ МЕХАНИКА) следует, что энергия атома может принимать только вполне определенные значения E 0 , E 1 , E 2 ,...E n ..., которые называются энергетическими уровнями. Самый низкий уровень E 0 , при котором энергия атома минимальна, называется основным. Остальные уровни, начиная с E 1 , называются возбужденными и соответствуют более высокой энергии атома. Атом переходит с одного из низких уровней на более высокий поглощая энергию, например, при взаимодействии с фотоном – квантом электромагнитного излучения. А при переходе с высокого уровня на низкий атом отдает энергию в виде фотона. В обоих случаях энергия фотона E = h n равна разности начального и конечного уровней:

h n mn = E m – E n (1)

где h = 6,626176·10 –34 Дж·с– постоянная Планка, n – частота излучения.

Атом в возбужденном состоянии неустойчив. Рано или поздно (в среднем за 10 –8 секунды), в случайный момент времени он самостоятельно (спонтанно) вернется в основное состояние, излучив электромагнитную волну – фотон. Случайный характер переходов приводит к тому, что все атомы вещества излучают неодновременно и независимо, фазы и направление движения излученных ими электромагнитных волн не согласованы. Именно так работают обычные источники света – лампы накаливания, газоразрядные трубки, таким же источником света является и Солнце и пр. Их спонтанное излучение некогерентно.

Но атом может также излучить фотон не спонтанно, а под действием электромагнитной волны, частота которой близка к частоте перехода атома, определяемой формулой (1):

n 21 = (E 2 – E 1)/h . (2)

Такая резонансная волна как бы «раскачивает» атом и «стряхивает» его с верхнего энергетического уровня на нижний. Происходит вынужденный переход, при котором излученная атомом волна имеет ту же частоту, фазу и направление распространения, что и волна первичная. Эти волны когерентны, при их сложении происходит увеличение интенсивности суммарного излучения, или числа фотонов.

Понятие вынужденного излучения было введено, а его особое свойство – когерентность – теоретически предсказано А.Эйнштейном в 1916 и строго обосновано П.Дираком с точки зрения квантовой механики в 1927–1930.

Обычно в веществе количество атомов в основном состоянии гораздо больше, чем атомов возбужденных. Поэтому световая волна, проходя по веществу, расходует свою энергию на возбуждение атомов. Интенсивность излучения при этом падает, подчиняясь закону Бугера:

I l = I 0 e –kl , (3)

где I 0 – исходная интенсивность, I l – интенсивность излучения, прошедшего расстояние l в веществе с коэффициентом поглощения k . Из уравнения видно, что среда поглощает свет очень сильно – по экспоненциальному закону.

Вещество, в котором возбужденных атомов гораздо больше, чем атомов в основном состоянии, называется активным. Число атомов на определенном уровне E n называется заселенностью этого уровня, а ситуация, когда E 2 > E 1 – инверсной заселенностью. Пусть по активному веществу проходит электромагнитная волна, частота которой n = n 21. Тогда за счет излучения при вынужденных переходах E 2 ® E 1 (которых значительно больше, чем актов поглощения E 1 ® E 2) будет происходить ее усиление. А с точки зрения квантовой механики это означает, что каждый пролетевший сквозь вещество фотон вызывает появление точно такого же фотона. Вместе они порождают еще два фотона, эти четыре – восемь и так далее – в активном веществе возникает фотонная лавина. Такое явление приводит к экспоненциальному закону нарастания интенсивности излучения, который записывается аналогично закону Бугера (3), но с коэффициентом квантового усиления a вместо –k :

I l = I 0 e a l (4)

На практике, однако, столь стремительного роста числа фотонов не происходит. В реальных веществах всегда есть множество факторов, вызывающих потерю энергии электромагнитной волны (рассеяние на неоднородностях среды, поглощение примесями и пр.). В итоге, можно добиться усиления волны хотя бы в десятки раз, только увеличив длину ее пробега в активной среде до нескольких метров, что осуществить нелегко. Но есть и другой путь: поместить активное вещество между двумя параллельными зеркалами (в резонатор). Волна, многократно отражаясь в них, пройдет достаточное для большого усиления расстояние, если, конечно, число возбужденных атомов будет оставаться большим, т.е. сохранится инверсная заселенность.

Инверсную заселенность можно осуществлять и поддерживать при помощи отдельного источника энергии, который как бы «накачивает» ею активное вещество. Таким источником может быть мощная лампа, электрический разряд, химическая реакция и т.п. Кроме того нужно, чтобы атомы на одном из верхних энергетических уровней оставались достаточно долго (в масштабах квантовых процессов, разумеется) чтобы их там накопилось порядка 50% от общего количества атомов вещества. А для этого необходимо иметь как минимум три уровня энергии рабочих частиц (атомов или ионов).

Трехуровневая схема генерации излучения работает следующим образом. Накачка переводит атомы с нижнего энергетического уровня E 0 на самый верхний E 3 . Оттуда они спускаются на уровень E 2 , где могут находиться достаточно долго без спонтанного испускания фотонов (такой уровень называется метастабильным). И только под воздействием проходящей электромагнитной волны атом возвращается на основной уровень E 0 , испуская вынужденное излучение частотой n = (E 2 – E 0)/h , когерентное исходной волне.

Условия создания инверсной населенности и экспериментального обнаружения вынужденного излучения сформулировал немецкий физик Р. Ланденбург в 1928 и независимо от него российский физик В.А.Фабрикант в 1939. Вынужденное излучение в виде коротких радиоимпульсов впервые наблюдали американские физики Е.Парселл и Р.Паунд в 1950. В 1951 В.А.Фабрикант с сотрудниками подает авторскую заявку на «способ усиления электромагнитного излучения (ультрафиолетового, видимого, инфракрасного, радиодиапазонов волн) путем прохождения усиливаемого излучения через среду с инверсной населенностью». Однако эта заявка была опубликована только в 1959, и никакого влияния на ход работ по созданию квантовых генераторов оказать не смогла. Потому что принципиальную возможность их построения начали обсуждать уже в начале 1950-х независимо друг от друга в СССР Н.Г.Басов с А.М.Прохоровым, и в США Ч.Таунс с Дж.Вебером. А в 1954–1956 был разработан и сконструирован первый квантовый генератор радиодиапазона (l = 1,25 см), в 1960 – лазер на рубине и газовый лазер, и спустя два года – полупроводниковый лазер.

Устройство лазера.

Несмотря на большое разнообразие типов активных сред и методов получения инверсной заселенности все лазеры имеют три основные части: активную среду, систему накачки и резонатор.

Активная среда– вещество, в котором создается инверсная заселенность, – может быть твердой (кристаллы рубина или алюмо-иттриевого граната, стекло с примесью неодима в виде стержней различного размера и формы), жидкой (растворы анилиновых красителей или растворы солей неодима в кюветах) и газообразной (смесь гелия с неоном, аргон, углекислый газ, водяной пар низкого давления в стеклянных трубках). Полупроводниковые материалы и холодная плазма, продукты химической реакции тоже дают лазерное излучение. В зависимости от типа активной среды лазеры называются рубиновыми, гелий-неоновыми, на красителях и т.п.

Резонаторпредставляет собой пару зеркал, параллельных друг другу, между которыми помещена активная среда. Одно зеркало («глухое») отражает весь падающий на него свет; второе, полупрозрачное, часть излучения возвращает в среду для осуществления вынужденного излучения, а часть выводится наружу в виде лазерного луча. В качестве «глухого» зеркала нередко используют призму полного внутреннего отражения (см . ОПТИКА), в качестве полупрозрачного – стопу стеклянных пластин. Кроме того, подбирая расстояние между зеркалами, резонатор можно настроить так, что лазер станет генерировать излучение только одного, строго определенного типа (так называемую моду).

Накачка создает инверсную заселенность в активных средах, причем для каждой среды выбирается наиболее удобный и эффективный способ накачки. В твердотельных и жидкостных лазерах используют импульсные лампы или лазеры, газовые среды возбуждают электрическим разрядом, полупроводники – электрическим током.

После того, как в активном элементе, помещенном внутрь резонатора, за счет накачки достигнуто состояние инверсии, его атомы время от времени начинают спонтанно опускаться на основной уровень, излучая фотоны. Испущенные под углом к оси резонатора фотоны вызывают короткую цепочку вынужденных излучений в этих направлениях и быстро покидают активную среду. И только фотоны, идущие вдоль оси резонатора, многократно отражаясь в зеркалах, порождают лавину когерентного излучения. При этом в преимущественном положении оказываются частоты (моды излучения), целое число полуволн которых укладывается на длине резонатора целое число раз.

Типы лазеров.

Твердотельные лазеры. Первой твердой активной средой стал рубин – кристалл корунда Al 2 O 3 с небольшой примесью ионов хрома Cr +++ . Сконструировал его Т.Мейман (США) в 1960. Широко применяется также стекло с примесью неодима Nd, алюмо-иттриевый гранат Y 2 Al 5 O 12 с примесью хрома, неодима и редкоземельных элементов в виде стержней. Накачкой твердотельных лазеров обычно служит импульсная лампа, вспыхивающая примерно на 10 –3 секунды, а лазерный импульс оказывается раза в два короче. Часть времени тратится на создание инверсной заселенности, а в конце вспышки интенсивность света становится недостаточной для возбуждения атомов и генерация прекратится. Лазерный импульс имеет сложную структуру, он состоит из множества отдельных пиков длительностью порядка 10 –6 секунды, разделенных промежутками, примерно, в 10 –5 секунды. В этом режиме так называемой свободной генерации мощность импульса может достигать десятков киловатт. Повысить мощность, просто усиливая свет накачки и увеличивая размеры лазерного стержня, невозможно чисто технически. Поэтому мощность лазерных импульсов повышают, уменьшая их длительность. Для этого перед одним из зеркал резонатора ставят затвор, который не позволяет генерации начаться, пока на верхний уровень не будут переброшены практически все атомы активного вещества. Затем затвор на короткое время открывается и вся накопленная энергия высвечивается в виде так называемого гигантского импульса. В зависимости от запаса энергии и длительности вспышки мощность импульса может составлять от нескольких мегаватт до десятков тераватт (10 12 ватт).

Газовые лазеры. Активной средой газовых лазеров служат газы низкого давления (от сотых долей до нескольких миллиметров ртутного столба) или их смеси, заполняющие стеклянную трубку с впаянными электродами. Первый газовый лазер на смеси гелия и неона был создан вскоре после лазера рубинового в 1960 А.Джаваном, В.Беннетом и Д.Эрриотом (США). Накачкой газовых лазеров служит электрический разряд, питаемый высокочастотным генератором. Генерация излучения ими происходит так же, как и в твердотельных лазерах, но газовые лазеры дают, как правило, непрерывное излучение. Поскольку плотность газов очень мала, длина трубки с активной средой должна быть достаточно велика, чтобы массы активного вещества хватило для получения высокой интенсивности излучения.

К газовым лазерам можно отнести также лазеры газодинамические, химические и эксимерные (лазеры, работающие на электронных переходах молекул, существующих только в возбужденном состоянии).

Газодинамический лазер похож на реактивный двигатель, в котором сгорает топливо с добавкой молекул газов активной среды. В камере сгорания молекулы газов возбуждаются, и, охлаждаясь при сверхзвуковом течении, отдают энергию в виде когерентного излучения большой мощности в инфракрасной области, которое выходит поперек газового потока.

В химических лазерах (вариант газодинамического лазера) инверсия заселенности образуется за счет химических реакций. Наиболее высокую мощность развивают лазеры на реакции атомарного фтора с водородом:

Жидкостные лазеры. Активной средой этих лазеров (их называют также лазерами на красителях) служат различные органические соединения в виде растворов. Первые лазеры на красителях появились в конце 60-х. Плотность их рабочего вещества занимает промежуточное место между твердым телом и газом, поэтому они генерируют довольно мощное излучение (до 20 Вт) при небольших размерах кюветы с активным веществом. Работают они как в импульсном, так и в непрерывном режиме, их накачку осуществляют импульсными лампами и лазерами. Возбужденные уровни молекул красителей имеют большую ширину, поэтому жидкостные лазеры излучают сразу несколько частот. А меняя кюветы с растворами красителей, излучение лазера можно перестраивать в очень широком диапазоне. Плавную подстройку частоты излучения осуществляют настройкой резонатора.

Полупроводниковые лазеры. Этот вид оптических квантовых генераторов был создан в 1962 одновременно несколькими группами американских исследователей (Р.Холлом, М.И.Нейтеном, Т.Квистом и др.), хотя теоретическое обоснование его работы сделал Н.Г.Басов с сотрудниками в 1958. Наиболее распространенные лазерный полупроводниковый материал – арсенид галлия GaAr.

В соответствии с законами квантовой механики электроны в твердом теле занимают широкие энергетические полосы, состоящие из множества непрерывно расположенных уровней. Нижняя полоса, называемая валентной зоной, отделена от верхней зоны (зоны проводимости) так называемой запрещенной зоной, в которой энергетические уровни отсутствуют. В полупроводнике электронов проводимости мало, подвижность их ограничена, но под действием теплового движения отдельные электроны могут перескакивать из валентной зоны в зону проводимости, оставляя в ней пустое место – «дырку». И если электрон с энергией E э спонтанно возвращается обратно в зону проводимости, происходит его «рекомбинация» с дыркой, имеющей энергию E д, которая сопровождается излучением из запрещенной зоны фотона частотой n = E э – E д. Накачка полупроводникового лазера осуществляется постоянным электрическим током (при этом от 50 до почти 100% его энергии превращается в излучение); резонатором обычно служат полированные грани кристалла полупроводника.

Лазеры в природе. Во Вселенной обнаружены лазеры естественного происхождения. Инверсная заселенность возникает в огромных межзвездных облаках конденсированных газов. Накачкой служат космические излучения, свет близких звезд и пр. Из-за гигантской протяженности активной среды (газовых облаков) – сотни миллионов километров – такие астрофизические лазеры не нуждаются в резонаторах: вынужденное электромагнитное излучение в диапазоне длин волн от нескольких сантиметров (Крабовидная туманность) до микрона (окрестности звезды Эта Карина) возникает в них при однократном проходе волны.

Свойства лазерного излучения.

В отличие от обычных, тепловых источников излучения лазер дает свет, обладающий целым рядом особых и очень ценных свойств.

1. Лазерное излучение когерентно и практически монохроматично. До появления лазеров этим свойством обладали только радиоволны, излучаемые хорошо стабилизированным передатчиком. А это дало возможность освоить диапазон видимого света для осуществления передачи информации и связи, тем самым существенно увеличив количество передаваемой информации в единицу времени.

Из-за того, что вынужденное излучение распространяется строго вдоль оси резонатора, лазерный луч расширяется слабо: его расходимость составляет несколько угловых секунд.

Все перечисленные качества позволяют фокусировать лазерный луч в пятно чрезвычайно малого размера, получая в точке фокуса огромную плотность энергии.

2. Лазерное излучение большой мощности имеет огромную температуру.

Связь между энергией равновесного излучения E данной частоты n и его температурой T задает закон излучения Планка. Зависимость между этими величинами имеет вид семейства кривых в координатах частота (по абсциссе) – энергия (по ординате). Каждая кривая дает распределение энергии в спектре излучения при определенной температуре. Лазерное излучение неравновесно, но, тем не менее, подставив в формулу Планка значения его энергии E в единице объема и частоты n (или отложив их значения на графике), мы получим температуру излучения. Поскольку лазерное излучение практически монохроматично, а плотность энергии (ее количество в единице объема) может быть чрезвычайно велика, температура излучения способна достигать огромной величины. Так, например, импульсный лазер мощностью порядка петаватта (10 15 Вт) имеет температуру излучения около 100 миллионов градусов.

Применение лазеров.

Уникальные свойства лазерного излучения сделали квантовые генераторы незаменимым инструментом в самых разных областях науки и техники.

1. Технологические лазеры. Мощные лазеры непрерывного действия применяются для резки, сварки и пайки деталей из различных материалов. Высокая температура излучения позволяет сваривать материалы, которые иными методами соединить нельзя (например, металл с керамикой). Высокая монохроматичность излучения позволяет сфокусировать луч в точку диаметром порядка микрона (за счет отсутствия дисперсии, см . КОЛЕБАНИЯ И ВОЛНЫ) и применять его для изготовления микросхем (так называемый метод лазерного скрайбирования – снятия тонкого слоя). Для обработки деталей в вакууме или в атмосфере инертного газа лазерный луч можно вводить в технологическую камеру через прозрачное окно.

Идеально прямой лазерный луч служит удобной «линейкой». В геодезии и строительстве импульсные лазеры применяют для измерения расстояний на местности, рассчитывая их по времени движения светового импульса между двумя точками. Точные измерения в промышленности производят при помощи интерференции лазерных лучей, отраженных от концевых поверхностей изделия.

2. Лазерная связь.Появление лазеров произвело переворот в технике связи и записи информации. Существует простая закономерность: чем выше несущая частота (меньше длина волны) канала связи, тем больше его пропускная способность. Именно поэтому радиосвязь, вначале освоившая диапазон длинных волн, постепенно переходила на все более короткие длины волн. Но свет – такая же электромагнитная волна, как и радиоволны, только в десятки тысяч раз короче, поэтому по лазерному лучу можно передать в десятки тысяч раз больше информации, чем по высокочастотному радиоканалу. Лазерная связь осуществляется по оптическому волокну – тонким стеклянным нитям, свет в которых за счет полного внутреннего отражения распространяется практически без потерь на многие сотни километров. Лазерным лучом записывают и воспроизводят изображение (в том числе движущееся) и звук на компакт-дисках.

3. Лазеры в медицине. Лазерная техника широко применяется и в хирургии, и в терапии. Лазерным лучом, введенным через глазной зрачок, «приваривают» отслоившуюся сетчатку и исправляют дефекты глазного дна. Хирургические операции, производимые «лазерным скальпелем» меньше травмируют живые ткани. А лазерное излучение малой мощности ускоряет заживление ран и оказывает воздействие, аналогичное иглоукалыванию, практикуемому восточной медициной (лазерная акупунктура).

4. Лазеры в научных исследованиях. Чрезвычайно высокая температура излучения и высокая плотность его энергии дает возможность исследовать вещество в экстремальном состоянии, существующем только в недрах горячих звезд. Делаются попытки осуществить термоядерную реакцию, сжимая ампулу со смесью дейтерия с тритием системой лазерных лучей (т.н. инерционный термоядерный синтез). В генной инженерии и нанотехнологии (технологии, имеющей дело с объектами с характерными размерами 10 –9 м) лазерными лучами разрезают, передвигают и соединяют фрагменты генов, биологических молекул и детали размером порядка миллионной доли миллиметра (10 –9 м). Лазерные локаторы (лидары) применяются для исследования атмосферы.

5. Военные лазеры. Военное применение лазеров включает как их использование для обнаружения целей и связи, так и применение в качестве оружия. Лучами мощных химических и эксимерных лазеров наземного или орбитального базирования планируется разрушать или выводить из строя боевые спутники и самолеты противника. Созданы образцы лазерных пистолетов для вооружения экипажей орбитальных станций военного назначения.

Можно без преувеличения сказать, что лазеры, появившиеся в середине XX века, сыграли такую же роль в жизни человечества, как электричество и радио полустолетием раньше.

Сергей Транковский


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении