teen-art.ru – Краткие содержания произведений русских и зарубежных

Краткие содержания произведений русских и зарубежных

Формула an геометрическая прогрессия. Знаменатель геометрической прогрессии: формулы и свойства. Для чего нужна геометрическая прогрессия и ее история возникновения

Формула n-го члена геометрической прогрессии – штука очень простая. Как по смыслу, так и по общему виду. Но задачки на формулу n-го члена встречаются всякие – от совсем примитивных до вполне себе серьёзных. И в процессе нашего знакомства мы обязательно рассмотрим и те и другие. Ну что, знакомимся?)

Итак, для начала собственно сама формула n

Вот она:

b n = b 1 · q n -1

Формула как формула, ничего сверхъестественного. Выглядит даже проще и компактнее, чем аналогичная формула для . Смысл формулы тоже прост, как валенок.

Эта формула позволяет находить ЛЮБОЙ член геометрической прогрессии ПО ЕГО НОМЕРУ " n ".

Как вы видите, по смыслу полная аналогия с арифметической прогрессией. Знаем номер n – можем посчитать и член, стоящий под этим номером. Какой хотим. Не умножая последовательно на "q" много-много раз. Вот и весь смысл.)

Я понимаю, что на данном уровне работы с прогрессиями все входящие в формулу величины вам уже должны быть понятны, но считаю своим долгом всё-таки расшифровать каждую. На всякий случай.

Итак, поехали:

b 1 первый член геометрической прогрессии;

q – ;

n – номер члена;

b n энный (n -й) член геометрической прогрессии.

Эта формулка связывает четыре главных параметра любой геометрической прогрессии – b n , b 1 , q и n . И вокруг этих четырёх ключевых фигур и вертятся все-все задачки по прогрессии.

"А как она выводится?" – слышу любопытный вопрос… Элементарно! Смотрите!

Чему равен второй член прогрессии? Не вопрос! Прямо по пишем:

b 2 = b 1 ·q

А третий член? Тоже не проблема! Второй член помножаем ещё раз на q .

Вот так:

B 3 = b 2 ·q

Вспомним теперь, что второй член, в свою очередь, у нас равен b 1 ·q и подставим это выражение в наше равенство:

B 3 = b 2 ·q = (b 1 ·q)·q = b 1 ·q·q = b 1 ·q 2

Получаем:

B 3 = b 1 ·q 2

А теперь прочитаем нашу запись по-русски: третий член равен первому члену, умноженному на q во второй степени. Улавливаете? Пока нет? Хорошо, ещё один шаг.

Чему равен четвёртый член? Всё то же самое! Умножаем предыдущий (т.е. третий член) на q:

B 4 = b 3 ·q = (b 1 ·q 2)·q = b 1 ·q 2 ·q = b 1 ·q 3

Итого:

B 4 = b 1 ·q 3

И снова переводим на русский язык: четвёртый член равен первому члену, умноженному на q в третьей степени.

И так далее. Ну и как? Уловили закономерность? Да! Для любого члена с любым номером количество одинаковых множителей q (т.е. степень знаменателя) всегда будет на единичку меньше, чем номер искомого члена n .

Стало быть, наша формула будет, без вариантов:

b n = b 1 · q n -1

Вот и все дела.)

Ну что, порешаем задачки, наверное?)

Решение задач на формулу n -го члена геометрической прогрессии.

Начнём, как обычно, с прямого применения формулы. Вот типичная задачка:

В геометрической прогрессии известно, что b 1 = 512 и q = -1/2. Найдите десятый член прогрессии.

Конечно, эту задачку можно вообще безо всяких формул решить. Прямо по смыслу геометрической прогрессии. Но нам ведь с формулой n-го члена размяться нужно, правда? Вот и разминаемся.

Наши данные для применения формулы следующие.

Известен первый член. Это 512.

b 1 = 512.

Известен также знаменатель прогрессии: q = -1/2.

Остаётся только сообразить, чему равен номер члена n. Не вопрос! Нас интересует десятый член? Вот и подставляем в общую формулу десятку вместо n.

И аккуратно считаем арифметику:

Ответ: -1

Как видим, десятый член прогрессии оказался с минусом. Ничего удивительного: знаменатель прогрессии у нас -1/2, т.е. отрицательное число. А это говорит нам о том, что знаки у нашей прогрессии чередуются, да.)

Здесь всё просто. А вот похожая задачка, но немного посложнее в плане вычислений.

В геометрической прогрессии известно, что:

b 1 = 3

Найдите тринадцатый член прогрессии.

Всё то же самое, только в этот раз знаменатель прогрессии – иррациональный . Корень из двух. Ну и ничего страшного. Формула – штука универсальная, с любыми числами справляется.

Работаем прямо по формуле:

Формула, конечно, сработала как надо, но… вот тут некоторые и зависнут. Что дальше делать с корнем? Как возвести корень в двенадцатую степень?

Как-как… Надо понимать, что любая формула, конечно, дело хорошее, но знание всей предыдущей математики при этом не отменяется! Как возвести? Да свойства степеней вспомнить! Превратим корень в степень с дробным показателем и – по формуле возведения степени в степень.

Вот так:

Ответ: 192

И все дела.)

В чём состоит основная трудность при прямом применении формулы n-го члена? Да! Основная трудность – это работа со степенями! А именно – возведение в степень отрицательных чисел, дробей, корней и тому подобных конструкций. Так что те, у кого с этим проблемы, настоятельная просьба повторить степени и их свойства! Иначе и в этой теме будете тормозить, да…)

А теперь порешаем типовые задачки на поиск одного из элементов формулы , если даны все остальные. Для успешного решения таких задач рецепт един и прост до ужаса – пишем формулу n -го члена в общем виде! Прямо в тетрадке рядышком с условием. А затем из условия соображаем, что нам дано, а чего не хватает. И выражаем из формулы искомую величину. Всё!

Например, такая безобидная задачка.

Пятый член геометрической прогрессии со знаменателем 3 равен 567. Найдите первый член этой прогрессии.

Ничего сложного. Работаем прямо по заклинанию.

Пишем формулу n-го члена!

b n = b 1 · q n -1

Что нам дано? Во-первых, дан знаменатель прогрессии: q = 3.

Кроме того, нам дан пятый член : b 5 = 567 .

Всё? Нет! Ещё нам дан номер n! Это – пятёрка: n = 5.

Надеюсь, вы уже понимаете, что в записи b 5 = 567 скрыты сразу два параметра – это сам пятый член (567) и его номер (5). В аналогичном уроке по я об этом уже говорил, но и здесь считаю не лишним напомнить.)

Вот теперь подставляем наши данные в формулу:

567 = b 1 ·3 5-1

Считаем арифметику, упрощаем и получаем простенькое линейное уравнение:

81 b 1 = 567

Решаем и получаем:

b 1 = 7

Как вы видите, с поиском первого члена проблем никаких. А вот при поиске знаменателя q и номера n могут встречаться и сюрпризы. И к ним (к сюрпризам) тоже надо быть готовым, да.)

Например, такая задачка:

Пятый член геометрической прогрессии с положительным знаменателем равен 162, а первый член этой прогрессии равен 2. Найдите знаменатель прогрессии.

В этот раз нам даны первый и пятый члены, а найти просят знаменатель прогрессии. Вот и приступаем.

Пишем формулу n -го члена!

b n = b 1 · q n -1

Наши исходные данные будут следующими:

b 5 = 162

b 1 = 2

n = 5

Не хватает значения q . Не вопрос! Сейчас найдём.) Подставляем в формулу всё что нам известно.

Получаем:

162 = 2· q 5-1

2 q 4 = 162

q 4 = 81

Простенькое уравнение четвёртой степени. А вот сейчас – аккуратно! На данном этапе решения многие ученики сразу же радостно извлекают корень (четвёртой степени) и получают ответ q =3 .

Вот так:

q 4 = 81

q = 3

Но вообще-то, это недоделанный ответ. Точнее, неполный. Почему? Дело в том, что ответ q = -3 тоже подходит: (-3) 4 тоже будет 81!

Всё из-за того, что степенное уравнение x n = a всегда имеет два противоположных корня при чётном n . С плюсом и с минусом:

Оба подходят.

Например, решая (т.е. второй степени)

x 2 = 9

Вы же почему-то не удивляетесь появлению двух корней x=±3? Вот и тут то же самое. И с любой другой чётной степенью (четвёртой, шестой, десятой и т.д.) будет так же. Подробности – в теме про

Поэтому правильное решение будет таким:

q 4 = 81

q = ±3

Хорошо, со знаками разобрались. Какой же из них правильный – плюс или минус? Что ж, читаем ещё раз условие задачи в поисках дополнительной информации. Её, конечно, может и не быть, но в данной задаче такая информация имеется. У нас в условии прямым текстом сказано, что дана прогрессия с положительным знаменателем.

Поэтому ответ очевиден:

q = 3

Здесь-то всё просто. А как вы думаете, что было бы, если бы формулировка задачи была бы вот такой:

Пятый член геометрической прогрессии равен 162, а первый член этой прогрессии равен 2. Найдите знаменатель прогрессии.

В чём отличие? Да! В условии ничего не сказано про знак знаменателя. Ни прямо, ни косвенно. И вот тут задачка уже имела бы два решения!

q = 3 и q = -3

Да-да! И с плюсом и с минусом.) Математически сей факт означал бы, что существуют две прогрессии , которые подходят под условие задачи. И для каждой – свой знаменатель. Ради интереса, потренируйтесь и выпишите первые пять членов каждой из них.)

А теперь потренируемся номер члена находить. Эта задачка самая сложная, да. Но зато и более творческая.)

Дана геометрическая прогрессия:

3; 6; 12; 24; …

Под каким номером в этой прогрессии стоит число 768?

Первый шаг всё тот же: пишем формулу n -го члена!

b n = b 1 · q n -1

А теперь, как обычно, подставляем в неё известные нам данные. Гм… не подставляется! Где первый член, где знаменатель, где всё остальное?!

Где-где… А глазки нам зачем? Ресницами хлопать? В этот раз прогрессия задана нам напрямую в виде последовательности. Первый член видим? Видим! Это – тройка (b 1 = 3). А знаменатель? Пока не видим, но он очень легко считается. Если, конечно, понимать, .

Вот и считаем. Прямо по смыслу геометрической прогрессии: берём любой её член (кроме первого) и делим на предыдущий.

Хотя бы вот так:

q = 24/12 = 2

Что ещё нам известно? Нам ещё известен некоторый член этой прогрессии, равный 768. Под каким-то номером n:

b n = 768

Номер его нам неизвестен, но наша задача как раз и состоит в том, чтобы его отыскать.) Вот и ищем. Все необходимые данные для подстановки в формулу мы уже скачали. Незаметно для себя.)

Вот и подставляем:

768 = 3·2 n -1

Делаем элементарные – делим обе части на тройку и переписываем уравнение в привычном виде: неизвестное слева, известное - справа.

Получаем:

2 n -1 = 256

Вот такое интересное уравнение. Надо найти "n". Что, непривычно? Да, я не спорю. Вообще-то, это простейшее . Оно так называется из-за того, что неизвестное (в данном случае это – номер n ) стоит в показателе степени.

На этапе знакомства с геометрической прогрессией (это девятый класс) показательные уравнения решать не учат, да… Это тема старших классов. Но страшного ничего нет. Даже если вы не в курсе, как решаются такие уравнения, попробуем найти наше n , руководствуясь простой логикой и здравым смыслом.

Начинаем рассуждать. Слева у нас стоит двойка в какой-то степени . Мы пока не знаем, что это конкретно за степень, но это и не страшно. Но зато мы твёрдо знаем, что эта степень равна 256! Вот и вспоминаем, в какой же степени двойка даёт нам 256. Вспомнили? Да! В восьмой степени!

256 = 2 8

Если не вспомнили или с распознаванием степеней проблемы, то тоже ничего страшного: просто последовательно возводим двойку в квадрат, в куб, в четвёртую степень, пятую и так далее. Подбор, фактически, но на данном уровне – вполне прокатит.

Так или иначе, мы получим:

2 n -1 = 2 8

n -1 = 8

n = 9

Итак, 768 – это девятый член нашей прогрессии. Всё, задача решена.)

Ответ: 9

Что? Скучно? Надоела элементарщина? Согласен. И мне тоже. Шагаем на следующий уровень.)

Более сложные задачи.

А теперь решаем задачки покруче. Не то чтобы совсем уж сверхкрутые, но над которыми предстоит немного поработать, чтобы добраться до ответа.

Например, такая.

Найдите второй член геометрической прогрессии, если четвёртый её член равен -24, а седьмой член равен 192.

Это классика жанра. Известны какие-то два разных члена прогрессии, а найти надо ещё какой-то член. Причём все члены НЕ соседние. Что и смущает поначалу, да…

Как и в , для решения таких задач рассмотрим два способа. Первый способ – универсальный. Алгебраический. Работает безотказно и с любыми исходными данными. Поэтому именно с него и начнём.)

Расписываем каждый член по формуле n -го члена!

Всё точь-в-точь как с арифметической прогрессией. Только в этот раз работаем с другой общей формулой. Вот и всё.) Но суть та же самая: берём и поочерёдно подставляем в формулу n-го члена наши исходные данные. Для каждого члена – свои.

Для четвёртого члена записываем:

b 4 = b 1 · q 3

-24 = b 1 · q 3

Есть. Одно уравнение готово.

Для седьмого члена пишем:

b 7 = b 1 · q 6

192 = b 1 · q 6

Итого получили два уравнения для одной и той же прогрессии .

Собираем из них систему:

Несмотря на её грозный вид, системка совсем простая. Самый очевидный способ решения – обычная подстановка. Выражаем b 1 из верхнего уравнения и подставляем в нижнее:

Немного повозившись с нижним уравнением (сократив степени и поделив на -24), получим:

q 3 = -8

К этому же уравнению, между прочим, можно прийти и более простым путём! Каким? Сейчас я вам продемонстрирую ещё один секретный, но оч-чень красивый, мощный и полезный способ решения подобных систем. Таких систем, в уравнениях которых сидят только произведения. Хотя бы в одном. Называется метод почленного деления одного уравнения на другое.

Итак, перед нами система:

В обоих уравнениях слева – произведение , а справа – просто число. Это очень хороший знак.) Давайте возьмём и… поделим, скажем, нижнее уравнение на верхнее! Что значит, поделим одно уравнение на другое? Очень просто. Берём левую часть одного уравнения (нижнего) и делим её на левую часть другого уравнения (верхнего). С правой частью аналогично: правую часть одного уравнения делим на правую часть другого.

Весь процесс деления выглядит так:

Теперь, сократив всё, что сокращается, получим:

q 3 = -8

Чем хорош этот способ? Да тем, что в процессе такого деления всё нехорошее и неудобное может благополучно сократиться и остаться вполне безобидное уравнение! Именно поэтому так важно наличие только умножения хотя бы в одном из уравнений системы. Нету умножения – нечего и сокращать, да…

А вообще, этот способ (как и многие другие нетривиальные способы решения систем) даже заслуживает отдельного урока. Обязательно его разберу поподробнее. Когда-нибудь…

Впрочем, неважно, как именно вы решаете систему, в любом случае теперь нам надо решить получившееся уравнение:

q 3 = -8

Никаких проблем: извлекаем корень (кубический) и – готово!

Прошу заметить, что здесь при извлечении ставить плюс/минус не нужно. Нечётной (третьей) степени у нас корень. И ответ – тоже один, да.)

Итак, знаменатель прогрессии найден. Минус два. Отлично! Процесс идёт.)

Для первого члена (скажем, из верхнего уравнения) мы получим:

Отлично! Знаем первый член, знаем знаменатель. И теперь у нас появилась возможность найти любой член прогрессии. В том числе и второй.)

Для второго члена всё совсем просто:

b 2 = b 1 · q = 3·(-2) = -6

Ответ: -6

Итак, алгебраический способ решения задачи мы с вами разложили по полочкам. Сложно? Не очень, согласен. Долго и нудно? Да, безусловно. Но иногда можно существенно сократить объём работы. Для этого есть графический способ. Старый добрый и знакомый нам по .)

Рисуем задачу!

Да! Именно так. Снова изображаем нашу прогрессию на числовой оси. Не обязательно по линеечке, не обязательно выдерживать равные интервалы между членами (которые, кстати, и не будут одинаковыми, т.к. прогрессия - геометрическая!), а просто схематично рисуем нашу последовательность.

У меня получилось вот так:


А теперь смотрим на картинку и соображаем. Сколько одинаковых множителей "q" разделяют четвёртый и седьмой члены? Верно, три!

Стало быть, имеем полное право записать:

-24· q 3 = 192

Отсюда теперь легко ищется q:

q 3 = -8

q = -2

Вот и отлично, знаменатель у нас уже в кармане. А теперь снова смотрим на картинку: сколько таких знаменателей сидит между вторым и четвёртым членами? Два! Стало быть, для записи связи между этими членами знаменатель будем возводить в квадрат .

Вот и пишем:

b 2 · q 2 = -24 , откуда b 2 = -24/ q 2

Подставляем наш найденный знаменатель в выражение для b 2 , считаем и получаем:

Ответ: -6

Как видим, всё гораздо проще и быстрее, чем через систему. Более того, здесь нам вообще даже не понадобилось считать первый член! Совсем.)

Вот такой простой и наглядный способ-лайт. Но есть у него и серьёзный недостаток. Догадались? Да! Он годится только для очень коротких кусочков прогрессии. Таких, где расстояния между интересующими нас членами не очень большие. А вот во всех остальных случаях картинку рисовать уже затруднительно, да… Тогда решаем задачу аналитически, через систему.) А системы – штука универсальная. С любыми числами справляются.

Ещё одна эпичная задачка:

Второй член геометрической прогрессии на 10 больше первого, а третий член на 30 больше второго. Найдите знаменатель прогрессии.

Что, круто? Вовсе нет! Всё то же самое. Снова переводим условие задачи в чистую алгебру.

1) Расписываем каждый член по формуле n -го члена!

Второй член: b 2 = b 1 ·q

Третий член: b 3 = b 1 ·q 2

2) Записываем связь между членами из условия задачи.

Читаем условие: "Второй член геометрической прогрессии на 10 больше первого". Стоп, это ценно!

Так и пишем:

b 2 = b 1 +10

И эту фразу переводим в чистую математику:

b 3 = b 2 +30

Получили два уравнения. Объединяем их в систему:

Система на вид простенькая. Но что-то уж много различных индексов у буковок. Подставим-ка вместо второго и третьего членов их выражения через первый член и знаменатель! Зря, что ли, мы их расписывали?

Получим:

А вот такая система – уже не подарок, да… Как такое решать? К сожалению, универсального секретного заклинания на решение сложных нелинейных систем в математике нет и быть не может. Это фантастика! Но первое что должно приходить вам в голову при попытке разгрызть подобный крепкий орешек – это прикинуть, а не сводится ли одно из уравнений системы к красивому виду, позволяющему, например, легко выразить одну из переменных через другую?

Вот и прикинем. Первое уравнение системы явно проще второго. Его и подвергнем пыткам.) А не попробовать ли из первого уравнения что-то выразить через что-то? Раз уж мы хотим найти знаменатель q , то выгоднее всего нам было бы выразить b 1 через q .

Вот и попробуем проделать эту процедуру с первым уравнением, применяя старые добрые :

b 1 q = b 1 +10

b 1 q – b 1 = 10

b 1 (q-1) = 10

Всё! Вот мы и выразили ненужную нам переменную (b 1) через нужную (q). Да, не самое простое выражение получили. Дробь какую-то… Но и система у нас приличного уровня, да.)

Типичное . Что делать – знаем.

Пишем ОДЗ (обязательно!) :

q ≠ 1

Умножаем всё на знаменатель (q-1) и сокращаем все дроби:

10 q 2 = 10 q + 30(q -1)

Делим всё на десятку, раскрываем скобки, собираем всё слева:

q 2 – 4 q + 3 = 0

Решаем получившееся и получаем два корня:

q 1 = 1

q 2 = 3

Окончательный ответ один: q = 3 .

Ответ: 3

Как вы видите, путь решения большинства задач на формулу n-го члена геометрической прогрессии всегда един: читаем внимательно условие задачи и с помощью формулы n-го члена переводим всю полезную информацию в чистую алгебру.

А именно:

1) Расписываем отдельно каждый данный в задаче член по формуле n -го члена.

2) Из условия задачи переводим связь между членами в математическую форму. Составляем уравнение или систему уравнений.

3) Решаем полученное уравнение или систему уравнений, находим неизвестные параметры прогрессии.

4) В случае неоднозначного ответа читаем внимательно условие задачи в поисках дополнительной информации (если таковая присутствует). Также сверяем полученный ответ с условиями ОДЗ (если таковые имеются).

А теперь перечислим основные проблемы, наиболее часто приводящие к ошибкам в процессе решения задач на геометрическую прогрессию.

1. Элементарная арифметика. Действия с дробями и отрицательными числами.

2. Если хотя бы с одним из этих трёх пунктов проблемы, то неизбежно будете ошибаться и в этой теме. К сожалению… Так что не ленитесь и повторите то о чём упомянуто выше. И по ссылочкам – сходите. Иногда помогает.)

Видоизменённые и рекуррентные формулы.

А теперь рассмотрим парочку типичных экзаменационных задачек с менее привычной подачей условия. Да-да, вы угадали! Это видоизменённые и рекуррентные формулы n-го члена. С такими формулами мы уже с вами сталкивались и работали в по арифметической прогрессии. Здесь всё аналогично. Суть та же.

Например, такая задачка из ОГЭ:

Геометрическая прогрессия задана формулой b n = 3·2 n . Найдите сумму первого и четвёртого её членов.

В этот раз прогрессия нам задана не совсем привычно. В виде какой-то формулы. Ну и что? Эта формула – тоже формула n -го члена! Мы же с вами знаем, что формулу n-го члена можно записать как в общем виде, через буквы, так и для конкретной прогрессии . С конкретными первым членом и знаменателем.

В нашем случае нам, на самом деле, задана формула общего члена для геометрической прогрессии вот с такими параметрами:

b 1 = 6

q = 2

Проверим?) Запишем формулу n-го члена в общем виде и подставим в неё b 1 и q . Получим:

b n = b 1 · q n -1

b n = 6·2 n -1

Упрощаем, используя разложение на множители и свойства степеней, и получаем:

b n = 6·2 n -1 = 3·2·2 n -1 = 3·2 n -1+1 = 3·2 n

Как видите, всё честно. Но наша с вами цель – не продемонстрировать вывод конкретной формулы. Это так, лирическое отступление. Чисто для понимания.) Наша цель - решить задачу по той формуле, что дана нам в условии. Улавливаете?) Вот и работаем с видоизменённой формулой напрямую.

Считаем первый член. Подставляем n =1 в общую формулу:

b 1 = 3·2 1 = 3·2 = 6

Вот так. Кстати, не поленюсь и ещё раз обращу ваше внимание на типовой ляп с подсчётом первого члена. НЕ НАДО, глядя на формулу b n = 3·2 n , сразу бросаться писать, что первый член – тройка! Это – грубейшая ошибка, да…)

Продолжаем. Подставляем n =4 и считаем четвёртый член:

b 4 = 3·2 4 = 3·16 = 48

Ну и наконец, считаем требуемую сумму:

b 1 + b 4 = 6+48 = 54

Ответ: 54

Ещё задачка.

Геометрическая прогрессия задана условиями:

b 1 = -7;

b n +1 = 3 b n

Найдите четвёртый член прогрессии.

Здесь прогрессия задана рекуррентной формулой. Ну и ладно.) Как работать с такой формулой – тоже знаем.

Вот и действуем. По шагам.

1) Считаем два последовательных члена прогрессии.

Первый член нам уже задан. Минус семь. А вот следующий, второй член, легко можно посчитать по рекуррентной формуле. Если понимать принцип её работы, конечно.)

Вот и считаем второй член по известному первому:

b 2 = 3 b 1 = 3·(-7) = -21

2) Считаем знаменатель прогрессии

Тоже никаких проблем. Прямо , делим второй член на первый.

Получаем:

q = -21/(-7) = 3

3) Пишем формулу n -го члена в привычном виде и считаем нужный член.

Итак, первый член знаем, знаменатель – тоже. Вот и пишем:

b n = -7·3 n -1

b 4 = -7·3 3 = -7·27 = -189

Ответ: -189

Как вы видите, работа с такими формулами для геометрической прогрессии ничем по своей сути не отличается от таковой для прогрессии арифметической. Важно лишь понимать общую суть и смысл этих формул. Ну и смысл геометрической прогрессии тоже надо понимать, да.) И тогда глупых ошибок не будет.

Ну что, порешаем самостоятельно?)

Совсем элементарные задачки, для разминки:

1. Дана геометрическая прогрессия, в которой b 1 = 243, а q = -2/3. Найдите шестой член прогрессии.

2. Общий член геометрической прогрессии задан формулой b n = 5∙2 n +1 . Найдите номер последнего трёхзначного члена этой прогрессии.

3. Геометрическая прогрессия задана условиями:

b 1 = -3;

b n +1 = 6 b n

Найдите пятый член прогрессии.

Чуть посложнее:

4. Дана геометрическая прогрессия:

b 1 =2048; q =-0,5

Чему равен шестой отрицательный её член?

Что, кажется суперсложно? Вовсе нет. Спасёт логика и понимание смысла геометрической прогрессии. Ну и формула n-го члена, само собой.

5. Третий член геометрической прогрессии равен -14, а восьмой член равен 112. Найдите знаменатель прогрессии.

6. Сумма первого и второго членов геометрической прогрессии равна 75, а сумма второго и третьего членов равна 150. Найдите шестой член прогрессии.

Ответы (в беспорядке): 6; -3888; -1; 800; -32; 448.

Вот почти и всё. Осталось лишь научиться нам считать сумму n первых членов геометрической прогрессии да открыть для себя бесконечно убывающую геометрическую прогрессию и её сумму. Очень интересную и необычную штуку, между прочим! Об этом - в следующих уроках.)

Геометрическая прогрессия - это числовая последовательность, первый член которой отличен от нуля, а каждый следующий член равен предыдущему члену, умноженному на одно и то же не равное нулю число.

Геометрическая прогрессия обозначается b1,b2,b3, …, bn, … .

Отношение любого члена геометрической погрешности к её предыдущему члену равно одному и тому же числу, то есть b2/b1 = b3/b2 = b4/b3 = … = bn/b(n-1) = b(n+1)/bn = … . Это следует непосредственно из определения арифметической прогрессии. Это число называют знаменателем геометрической прогрессии. Обычно знаменатель геометрической прогрессии обозначают буквой q.

Монотонная и постоянная последовательность

Одним из способов задания геометрической прогрессии является задание её первого члена b1 и знаменателя геометрической погрешности q. Например, b1=4, q=-2. Эти два условия задают геометрическую прогрессию 4, -8, 16, -32, … .

Если q>0 (q не равно 1), то прогрессия является монотонной последовательностью. Например, последовательность, 2, 4,8,16,32, … является монотонно возрастающей последовательностью (b1=2, q=2).

Если в геометрической погрешности знаменатель q=1, то все члены геометрической прогрессии будут равны между собой. В таких случаях говорят, что прогрессия является постоянной последовательностью.

Формула n-ого члена геометрической прогрессии

Для того, чтобы числовая последовательность (bn) являлась геометрической прогрессией необходимо, чтобы каждый её член, начиная со второго, являлся средним геометрическим соседних членов. То есть необходимо выполнение следующего уравнения
(b(n+1))^2 = bn * b(n+2),для любого n>0, где n принадлежит множеству натуральных чисел N.

Формула n-ого члена геометрической прогрессии имеет вид:

bn=b1*q^(n-1),

где n принадлежит множеству натуральных чисел N.

Формула суммы n первых членов геометрической прогрессии

Формула суммы n первых членов геометрической прогрессии имеет вид:

Sn = (bn*q - b1)/(q-1), где q не равно 1.

Рассмотрим простой пример:

В геометрической прогрессии b1=6, q=3, n=8 найти Sn.

Для нахождения S8 воспользуемся формулой суммы n первых членов геометрической прогрессии.

S8= (6*(3^8 -1))/(3-1) = 19 680.

Математика – это то, посредством чего люди управляют природой и собой.

Советский математик, академик А.Н. Колмогоров

Геометрическая прогрессия.

Наряду с задачами на арифметические прогрессии также распространенными на вступительных испытаниях по математике являются задачи, связанные с понятием геометрической прогрессии. Для успешного решения таких задач необходимо знать свойства геометрической прогрессии и иметь хорошие навыки их использования.

Настоящая статья посвящена изложению основных свойств геометрической прогрессии. Здесь также приводятся примеры решения типовых задач , позаимствованных из заданий вступительных испытаний по математике.

Предварительно отметим основные свойства геометрической прогрессии и напомним наиболее важные формулы и утверждения , связанные с этим понятием.

Определение. Числовая последовательность называется геометрической прогрессией, если каждое ее число, начиная со второго, равно предыдущему, умноженному на одно и то же число . Число называется знаменателем геометрической прогрессии.

Для геометрической прогрессии справедливы формулы

, (1)

где . Формула (1) называется формулой общего члена геометрической прогрессии, а формула (2) представляет собой основное свойство геометрической прогрессии: каждый член прогрессии совпадает со средним геометрическим своих соседних членов и .

Отметим , что именно из-за этого свойства рассматриваемая прогрессия называется «геометрической».

Приведенные выше формулы (1) и (2) обобщаются следующим образом:

, (3)

Для вычисления суммы первых членов геометрической прогрессии применяется формула

Если обозначить , то

где . Так как , то формула (6) является обобщением формулы (5).

В том случае , когда и , геометрическая прогрессия является бесконечно убывающей. Для вычисления суммы всех членов бесконечно убывающей геометрической прогрессии используется формула

. (7)

Например , с помощью формулы (7) можно показать , что

где . Данные равенства получены из формулы (7) при условии, что , (первое равенство) и , (второе равенство).

Теорема. Если , то

Доказательство. Если , то ,

Теорема доказана.

Перейдем к рассмотрению примеров решения задач на тему «Геометрическая прогрессия».

Пример 1. Дано: , и . Найти .

Решение. Если применить формулу (5), то

Ответ: .

Пример 2. Пусть и . Найти .

Решение. Так как и , то воспользуемся формулами (5), (6) и получим систему уравнений

Если второе уравнение системы (9) разделить на первое , то или . Отсюда следует и . Рассмотрим два случая.

1. Если , то из первого уравнения системы (9) имеем .

2. Если , то .

Пример 3. Пусть , и . Найти .

Решение. Из формулы (2) следует, что или . Так как , то или .

По условию . Однако , поэтому . Поскольку и , то здесь имеем систему уравнений

Если второе уравнение системы разделить на первое, то или .

Так как , то уравнение имеет единственный подходящий корень . В таком случае из первого уравнения системы вытекает .

Принимая во внимание формулу (7), получаем.

Ответ: .

Пример 4. Дано: и . Найти .

Решение. Так как , то .

Поскольку , то или

Согласно формуле (2) имеем . В этой связи из равенства (10) получаем или .

Однако по условию , поэтому .

Пример 5. Известно, что . Найти .

Решение. Согласно теореме имеем два равенства

Так как , то или . Поскольку , то .

Ответ: .

Пример 6. Дано: и . Найти .

Решение. Принимая во внимание формулу (5), получаем

Так как , то . Поскольку , и , то .

Пример 7. Пусть и . Найти .

Решение. Согласно формуле (1) можно записать

Следовательно, имеем или . Известно, что и , поэтому и .

Ответ: .

Пример 8. Найти знаменатель бесконечной убывающей геометрической прогрессии , если

и .

Решение. Из формулы (7) следует и . Отсюда и из условия задачи получаем систему уравнений

Если первое уравнение системы возвести в квадрат , а затем полученное уравнение разделить на второе уравнение , то получим

Или .

Ответ: .

Пример 9. Найти все значения , при которых последовательность , , является геометрической прогрессией.

Решение. Пусть , и . Согласно формуле (2), которая задает основное свойство геометрической прогрессии, можно записать или .

Отсюда получаем квадратное уравнение , корнями которого являются и .

Выполним проверку: если , то , и ; если , то , и .

В первом случае имеем и , а во втором – и .

Ответ: , .

Пример 10. Решить уравнение

, (11)

где и .

Решение. Левая часть уравнения (11) представляет собой сумму бесконечной убывающей геометрической прогрессии, в которой и , при условии: и .

Из формулы (7) следует , что . В этой связи уравнение (11) принимает вид или . Подходящим корнем квадратного уравнения является

Ответ: .

Пример 11. П оследовательность положительных чисел образует арифметическую прогрессию , а – геометрическую прогрессию , причем здесь . Найти .

Решение. Так как арифметическая последовательность , то (основное свойство арифметической прогрессии). Поскольку , то или . Отсюда следует , что геометрическая прогрессия имеет вид . Согласно формуле (2) , далее запишем , что .

Так как и , то . В таком случае выражение принимает вид или . По условию , поэтому из уравнения получаем единственное решение рассматриваемой задачи , т.е. .

Ответ: .

Пример 12. Вычислить сумму

. (12)

Решение. Умножим на 5 обе части равенства (12) и получим

Если из полученного выражения вычесть (12) , то

или .

Для вычисления подставим в формулу (7) значения , и получим . Так как , то .

Ответ: .

Приведенные здесь примеры решения задач будут полезны абитуриентам при подготовке к вступительным испытаниям. Для более глубокого изучения методов решения задач , связанных с геометрической прогрессией , можно использовать учебные пособия из списка рекомендуемой литературы.

1. Сборник задач по математике для поступающих во втузы / Под ред. М.И. Сканави. – М.: Мир и Образование, 2013. – 608 с.

2. Супрун В.П. Математика для старшеклассников: дополнительные разделы школьной программы. – М.: Ленанд / URSS , 2014. – 216 с.

3. Медынский М.М. Полный курс элементарной математики в задачах и упражнениях. Книга 2: Числовые последовательности и прогрессии. – М.: Эдитус , 2015. – 208 с.

Остались вопросы?

Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Геометрическая прогрессия – это новый вид числовой последовательности, с которым нам предстоит познакомиться. Для успешного знакомства не помешает хотя бы знать и понимать, . Тогда и с геометрической прогрессией проблем не будет.)

Что такое геометрическая прогрессия? Понятие геометрической прогрессии.

Начинаем экскурсию, как обычно, с элементарщины. Пишу незаконченную последовательность чисел:

1, 10, 100, 1000, 10000, …

Сможете уловить закономерность и сказать, какие числа пойдут дальше? Ясен перец, дальше пойдут числа 100000, 1000000 и так далее. Даже без особого умственного напряжения всё ясно, правда ведь?)

Ладно. Ещё пример. Пишу вот такую последовательность:

1, 2, 4, 8, 16, …

Сможете сказать, какие числа пойдут дальше, вслед за числом 16 и назвать восьмой член последовательности? Если вы сообразили, что это будет число 128, то очень хорошо. Значит, полдела в понимании смысла и ключевых моментов геометрической прогрессии уже сделано. Можно расти дальше.)

А теперь снова переходим от ощущений к строгой математике.

Ключевые моменты геометрической прогрессии.

Ключевой момент №1

Геометрическая прогрессия – это последовательность чисел. Как и прогрессия. Ничего хитрого. Только устроена эта последовательность по-другому. Отсюда, естественно, и другое название носит, да…

Ключевой момент №2

Со вторым ключевым моментом вопрос похитрее будет. Давайте вернёмся чуть назад и вспомним ключевое свойство арифметической прогрессии. Вот оно: каждый член отличается от предыдущего на одну и ту же величину.

А можно ли похожее ключевое свойство сформулировать для геометрической прогрессии? Подумайте немного… Присмотритесь к приведённым примерам. Догадались? Да! В геометрической прогрессии (любой!) каждый её член отличается от предыдущего в одно и то же число раз. Всегда!

В первом примере это число – десятка. Какой член последовательности ни возьми, он больше предыдущего в десять раз.

Во втором примере это – двойка: каждый член больше предыдущего в два раза.

Именно этим ключевым моментом геометрическая прогрессия и отличается от арифметической. В арифметической прогрессии каждый следующий член получается прибавлением одной и той же величины к предыдущему члену. А здесь – умножением предыдущего члена на одну и ту же величину. Вот и вся разница.)

Ключевой момент №3

Этот ключевой момент полностью идентичен таковому для арифметической прогрессии. А именно: каждый член геометрической прогрессии стоит на своём месте. Всё точь-в-точь как и в арифметической прогрессии и комментарии, я думаю, излишни. Есть первый член, есть сто первый и т.д. Переставим местами хотя бы два члена – закономерность (а вместе с ней и геометрическая прогрессия) исчезнут. Останется просто последовательность чисел безо всякой логики.

Вот и всё. Вот и весь смысл геометрической прогрессии.

Термины и обозначения.

А вот теперь, разобравшись со смыслом и ключевыми моментами геометрической прогрессии, можно и к теории переходить. А иначе какая же теория без понимания смысла, правда?

Как обозначать геометрическую прогрессию?

Как записывается геометрическая прогрессия в общем виде? Никаких проблем! Каждый член прогрессии также записывается в виде буквы. Только для арифметической прогрессии, обычно, используется буква "а" , для геометрической – буковка "b". Номер члена , как обычно, указывается индексом справа внизу . Сами члены прогрессии просто перечисляем через запятую или точку с запятой.

Вот так:

b 1 , b 2 , b 3 , b 4 , b 5 , b 6 , …

Коротко такую прогрессию записывают вот так: (b n ) .

Или вот так, для конечных прогрессий:

b 1 , b 2 , b 3 , b 4 , b 5 , b 6 .

b 1 , b 2 , …, b 29 , b 30 .

Или, в краткой записи:

(b n ), n =30 .

Вот, собственно, и все обозначения. Всё то же самое, только буква другая, да.) А теперь переходим непосредственно к определению.

Определение геометрической прогрессии.

Геометрическая прогрессия – это числовая последовательность, первый член которой отличен от нуля, а каждый последующий член равен предыдущему члену, умноженному на одно и то же ненулевое число.

Вот и всё определение. Большинство слов и фраз вам понятны и хорошо знакомы. Если, конечно, понимаете смысл геометрической прогрессии "на пальцах" и вообще. Но есть и несколько новых фраз, на которые я хотел бы обратить особое внимание.

Во-первых, слова: "первый член которой отличен от нуля ".

Это ограничение на первый член введено не случайно. Как вы думаете, что произойдёт, если первый член b 1 окажется равным нулю? Чему будет равен второй член, если каждый член больше предыдущего в одно и то же число раз? Допустим, в три раза? Посмотрим… Умножаем первый член (т.е. 0) на 3 и получаем… ноль! А третий член? Тоже ноль! И четвёртый член – тоже ноль! И так далее…

Получаем просто мешок баранок последовательность нулей:

0, 0, 0, 0, …

Конечно, такая последовательность имеет право на жизнь, но никакого практического интереса она не представляет. Всё и так понятно. Любой её член – ноль. Сумма любого количества членов – тоже ноль… Что с ней интересного можно делать? Ничего…

Следующие ключевые слова: "умноженному на одно и то же ненулевое число".

Это самое число тоже носит своё специальное название – знаменатель геометрической прогрессии . Начинаем знакомство.)

Знаменатель геометрической прогрессии.

Всё проще простого.

Знаменатель геометрической прогрессии – это ненулевое число (или величина), показывающее, во сколько раз каждый член прогрессии больше предыдущего.

Опять же, по аналогии с арифметической прогрессией, ключевым словом, на которое следует обратить внимание в этом определении, является слово "больше" . Оно означает, что каждый член геометрической прогрессии получается умножением на этот самый знаменатель предыдущего члена.

Поясняю.

Для расчёта, скажем, второго члена, надо взять первый член и умножить его на знаменатель. Для расчёта десятого члена, надо взять девятый член и умножить его на знаменатель.

Сам знаменатель геометрической прогрессии может при этом быть каким угодно. Совершенно любым! Целым, дробным, положительным, отрицательным, иррациональным – всяким. Кроме нуля. Об этом и говорит нам слово "ненулевое" в определении. Зачем это слово тут нужно – об этом далее.

Знаменатель геометрической прогрессии обозначается, чаще всего, буковкой q .

Как найти это самое q ? Не вопрос! Надо взять любой член прогрессии и поделить на предыдущий член . Деление – это дробь . Отсюда и название - "знаменатель прогрессии". Знаменатель, он обычно в дроби сидит, да…) Хотя, по логике, величину q следовало бы называть частным геометрической прогрессии, по аналогии с разностью для прогрессии арифметической. Но договорились называть знаменателем . И мы тоже не будем изобретать велосипед.)

Определим, например, величину q для такой геометрической прогрессии:

2, 6, 18, 54, …

Всё элементарно. Берём любое число последовательности. Какое хотим, такое и берём. Кроме самого первого. Например, 18. И делим на предыдущее число . То есть, на 6.

Получаем:

q = 18/6 = 3

Вот и всё. Это верный ответ. Для данной геометрической прогрессии знаменатель равен трём.

Найдём теперь знаменатель q для другой геометрической прогрессии. Например, вот такой:

1, -2, 4, -8, 16, …

Всё то же самое. Какие бы знаки ни были у самих членов, всё равно берём любое число последовательности (например, 16) и делим на предыдущее число (т.е. -8).

Получим:

d = 16/(-8) = -2

И все дела.) В этот раз знаменатель прогрессии оказался отрицательным. Минус два. Бывает.)

Возьмём теперь вот такую прогрессию:

1, 1/3, 1/9, 1/27, …

И снова, вне зависимости от вида чисел, стоящих в последовательности (хоть целые, хоть дробные, хоть отрицательные, хоть иррациональные), берём любое число (например, 1/9) и делим на предыдущее число (1/3). По правилам действий с дробями, естественно.

Получим:

И всё.) Здесь знаменатель оказался дробным: q = 1/3.

А вот такая "прогрессия" как вам?

3, 3, 3, 3, 3, …

Очевидно, здесь q = 1 . Формально это тоже геометрическая прогрессия, только с одинаковыми членами .) Но такие прогрессии для изучения и практического применения не интересны. Так же, как и прогрессии со сплошными нулями. Поэтому мы их рассматривать и не будем.

Как вы видите, знаменатель прогрессии может быть каким угодно – целым, дробным, положительным, отрицательным – всяким! Не может быть только нулём. Не догадались, почему?

Ну, давайте на каком-нибудь конкретном примере посмотрим, что будет, если взять в качестве знаменателя q нолик.) Пусть у нас, допустим, будет b 1 = 2 , а q = 0 . Чему тогда будет равен второй член?

Считаем:

b 2 = b 1 · q = 2·0 = 0

А третий член?

b 3 = b 2 · q = 0·0 = 0

Виды и поведение геометрических прогрессий.

С всё было более-менее ясно: если разность прогрессии d положительна, то прогрессия возрастает. Если же разность отрицательна, то прогрессия убывает. Всего два варианта. Третьего не дано.)

А вот с поведением геометрической прогрессии всё будет уже гораздо интереснее и разнообразнее!)

Как только себя тут члены ни ведут: и возрастают, и убывают, и неограниченно приближаются к нулю, и даже меняют знаки, попеременно бросаясь то в "плюс", то в "минус"! И во всём этом многообразии надо уметь хорошо разбираться, да…

Разбираемся?) Начинаем с самого простого случая.

Знаменатель положительный ( q >0)

При положительном знаменателе, во-первых, члены геометрической прогрессии могут уходить в плюс бесконечность (т.е. неограниченно возрастать) и могут уходить в минус бесконечность (т.е. неограниченно убывать). К такому поведению прогрессий мы уже попривыкли.

Например:

(b n ): 1, 2, 4, 8, 16, …

Здесь всё просто. Каждый член прогрессии получается больше предыдущего . Причём каждый член получается умножением предыдущего члена на положительное число +2 (т.е. q = 2 ). Поведение такой прогрессии очевидно: все члены прогрессии неограниченно растут, уходя в космос. В плюс бесконечность…

А теперь вот такая прогрессия:

(b n ): -1, -2, -4, -8, -16, …

Здесь тоже каждый член прогрессии получается умножением предыдущего члена на положительное число +2. А вот поведение такой прогрессии уже прямо противоположное: каждый член прогрессии получается меньше предыдущего , и все её члены неограниченно убывают, уходя в минус бесконечность.

А теперь давайте подумаем: что общего у этих двух прогрессий? Правильно, знаменатель! И там и там q = +2 . Положительное число. Двойка. А вот поведение этих двух прогрессий – принципиально разное! Не догадались, почему? Да! Всё дело в первом члене! Именно он, как говорится, и заказывает музыку.) Смотрите сами.

В первом случае первый член прогрессии положительный (+1) и, стало быть, все последующие члены, получаемые умножением на положительный знаменатель q = +2 , также будут положительными.

А вот во втором случае первый член отрицательный (-1). Поэтому и все последующие члены прогрессии, получаемые умножением на положительное q = +2 , также будут получаться отрицательными. Ибо "минус" на "плюс" всегда даёт "минус", да.)

Как вы видите, в отличие от арифметической прогрессии, геометрическая прогрессия может вести себя совершенно по-разному не только в зависимости от знаменателя q , но ещё и в зависимости от первого члена , да.)

Запоминаем: поведение геометрической прогрессии однозначно определяется её первым членом b 1 и знаменателем q .

А теперь начинаем разбор менее привычных, но зато гораздо более интересных случаев!

Возьмём, например, вот такую последовательность:

(b n ): 1, 1/2, 1/4, 1/8, 1/16, …

Эта последовательность – тоже геометрическая прогрессия! Каждый член этой прогрессии тоже получается умножением предыдущего члена, на одно и то же число. Только число это – дробное: q = +1/2 . Или +0,5 . Причём (важно!) число, меньшее единички: q = 1/2<1.

Чем интересна эта геометрическая прогрессия? Куда стремятся её члены? Давайте посмотрим:

1/2 = 0,5;

1/4 = 0,25;

1/8 = 0,125;

1/16 = 0,0625;

…….

Что интересного здесь можно заметить? Во-первых, сразу бросается в глаза убывание членов прогрессии: каждый её член меньше предыдущего ровно в 2 раза. Или, в соответствии с определением геометрической прогрессии, каждый член больше предыдущего в 1/2 раза , т.к. знаменатель прогрессии q = 1/2 . А от умножения на положительное число, меньшее единички, результат обычно уменьшается, да…

Что ещё можно заметить в поведении этой прогрессии? Убывают ли её члены неограниченно , уходя в минус бесконечность? Нет! Они убывают по-особенному. Сначала довольно быстро убывают, а потом всё медленнее и медленнее. Причём всё время оставаясь положительными . Пускай и очень-очень маленькими. А к чему же они сами при этом стремятся? Не догадались? Да! К нулю они стремятся!) Причём, обратите внимание, самого нуля члены нашей прогрессии никогда не достигают! Только лишь бесконечно близко к нему приближаются . Это очень важно.)

Похожая ситуация будет и в такой прогрессии:

(b n ): -1, -1/2, -1/4, -1/8, -1/16, …

Здесь b 1 = -1 , а q = 1/2 . Всё то же самое, только к нулю теперь члены будут приближаться уже с другой стороны, снизу. Всё время оставаясь отрицательными .)

Такая геометрическая прогрессия, члены которой неограниченно приближаются к нулю (неважно, с положительной или с отрицательной стороны), в математике носит особое название – бесконечно убывающая геометрическая прогрессия. Прогрессия эта настолько интересная и необычная, что о ней даже будет отдельный урок .)

Итак, мы рассмотрели все возможные положительные знаменатели – и большие единички и меньшие единички. Саму единичку в качестве знаменателя мы не рассматриваем по причинам, изложенным выше (вспомните пример с последовательностью троек…)

Подытожим:

положителен и больше единицы (q >1), то члены прогрессии:

a ) неограниченно возрастают (если b 1 >0);

б) неограниченно убывают (если b 1 <0).

Если знаменатель геометрической прогрессии положителен и меньше единицы (0< q <1), то члены прогрессии:

а) бесконечно близко приближаются к нулю сверху (если b 1 >0);

б) бесконечно близко приближаются к нулю снизу (если b 1 <0).

Осталось теперь рассмотреть случай отрицательного знаменателя.

Знаменатель отрицательный ( q <0)

За примером далеко ходить не будем. Чего, собственно, лохматить бабушку?!) Пусть, например, первый член прогрессии будет b 1 = 1 , а знаменатель возьмём q = -2 .

Получим вот такую последовательность:

(b n ): 1, -2, 4, -8, 16, …

И так далее.) Каждый член прогрессии получается умножением предыдущего члена на отрицательное число -2. При этом все члены, стоящие на нечётных местах (первый, третий, пятый и т.д.) будут положительными , а на чётных местах (второй, четвёртый и т.д.) – отрицательными. Знаки строго чередуются. Плюс-минус-плюс-минус… Такая геометрическая прогрессия так и называется – возрастающей знакочередующейся.

Куда же стремятся её члены? А никуда.) Да, по абсолютной величине (т.е. по модулю) члены нашей прогрессии неограниченно возрастают (отсюда и название "возрастающая"). Но при этом каждый член прогрессии поочерёдно бросает то в жар, то в холод. То в "плюс", то в "минус". Колеблется наша прогрессия… Причём размах колебаний с каждым шагом стремительно растёт, да.) Стало быть, стремления членов прогрессии куда-то конкретно здесь нет. Ни к плюс бесконечности, ни к минус бесконечности, ни к нулю – никуда.

Рассмотрим теперь какой-нибудь дробный знаменатель между нулём и минус единичкой.

Например, пусть будет b 1 = 1 , а q = -1/2 .

Тогда получим прогрессию:

(b n ): 1, -1/2, 1/4, -1/8, 1/16, …

И снова имеем чередование знаков! Но, в отличие от предыдущего примера, здесь уже прослеживается чёткая тенденция приближения членов к нулю.) Только в этот раз наши члены приближаются к нулю не строго сверху или снизу, а снова колеблясь . Попеременно принимая то положительные, то отрицательные значения. Но при этом их модули становятся всё ближе и ближе к заветному нолику.)

Такая геометрическая прогрессия называется бесконечно убывающей знакочередующейся.

Чем интересны эти два примера? А тем, что в обоих случаях имеет место чередование знаков! Такая фишка характерна только для прогрессий с отрицательным знаменателем, да.) Стало быть, если в каком-то задании вы увидите геометрическую прогрессию со знакочередующимися членами, то уже твёрдо будете знать, что её знаменатель на 100% отрицательный и не ошибётесь в знаке.)

Кстати, в случае отрицательного знаменателя знак первого члена совершенно не влияет на поведение самой прогрессии. С каким бы знаком первый член прогрессии ни был, в любом случае будет наблюдаться знакочередование членов. Весь вопрос лишь в том, на каких местах (чётные или нечётные) будут стоять члены с конкретными знаками.

Запоминаем:

Если знаменатель геометрической прогрессии отрицательный , то знаки членов прогрессии всегда чередуются.

При этом сами члены:

а) неограниченно возрастают по модулю , если q <-1;

б) бесконечно приближаются к нулю, если -1< q <0 (прогрессия бесконечно убывающая).

Вот и всё. Все типовые случаи разобраны.)

В процессе разбора самых разных примеров геометрических прогрессий, я периодически употреблял слова: "стремится к нулю" , "стремится к плюс бесконечности" , "стремится к минус бесконечности" … Ничего страшного.) Эти речевые обороты (и конкретные примеры) – всего лишь начальное знакомство с поведением самых разных числовых последовательностей. На примере геометрической прогрессии.

Зачем нам вообще нужно знать поведение прогрессии? Какая разница, куда она там стремится? К нулю ли, к плюс бесконечности, к минус бесконечности… Нам-то что от этого?

Дело всё в том, что уже в ВУЗе, в курсе высшей математики, вам понадобится умение работать с самыми разными числовыми последовательностями (с любыми, а не только прогрессиями!) и умение представлять, как именно себя ведёт та или иная последовательность – возрастает ли она неограниченно, убывает ли, стремится ли к конкретному числу (причём не обязательно к нулю) или даже вообще ни к чему не стремится… Этой теме в курсе матанализа посвящён целый раздел – теория пределов. А чуть конкретнее – понятие предела числовой последовательности. Очень интересная тема! Имеет смысл поступить в институт и разобраться.)

Некоторые примеры из этого раздела (последовательности, имеющие предел) и в частности, бесконечно убывающая геометрическая прогрессия начинают осваиваться ещё в школе. Привыкаем.)

Более того, умение хорошо исследовать поведение последовательностей в дальнейшем здорово сыграет на руку и очень пригодится в исследовании функций. Самых разнообразных. А вот умение грамотно работать с функциями (вычислять производные, исследовать их по полной программе, строить их графики) уже резко повышает ваш математический уровень! Сомневаетесь? Не надо. Ещё вспомните мои слова.)

Посмотрим на геометрическую прогрессию в жизни?

В окружающей нас жизни с геометрической прогрессией мы сталкиваемся очень и очень часто. Даже сами того не подозревая.)

Например, различные микроорганизмы, которые окружают нас повсюду в огромных количествах и которых мы даже не видим без микроскопа, размножаются именно в геометрической прогрессии.

Скажем, одна бактерия размножается делением пополам, давая потомство в 2 бактерии. В свою очередь, каждая из них, размножаясь, тоже делится пополам, давая общее потомство в 4 бактерии. Следующее поколение даст уже 8 бактерий, потом 16 бактерий, 32, 64 и так далее. С каждым следующим поколением число бактерий удваивается. Типичный пример геометрической прогрессии.)

Также в геометрической прогрессии размножаются и некоторые насекомые – тля, мухи. И кролики иногда, кстати, тоже.)

Другой пример геометрической прогрессии, уже ближе к обыденной жизни, - это так называемые сложные проценты. Такое интересное явление часто встречается в банковских вкладах и называется капитализацией процентов. Что это такое?

Сами вы пока что ещё, конечно, юные. В школе учитесь, в банки не обращаетесь. А вот родители ваши – люди уже взрослые и самостоятельные. На работу ходят, денежки на хлеб насущный зарабатывают, а часть денег кладут в банк, делая сбережения.)

Скажем, ваш папа хочет поднакопить определённую денежную сумму на семейный отдых в Турции и положил в банк 50000 рублей под 10% годовых сроком на три года с ежегодной капитализацией процентов. Причём в течение всего этого срока делать со вкладом ничего нельзя. Нельзя ни пополнять вклад, ни снимать деньги со счёта. Какую прибыль он получит через эти три года?

Ну, во-первых, надо разобраться, что же такое 10% годовых. Это значит, что через год к первоначальной сумме вклада банком будут начислены 10%. От чего? Конечно же, от первоначальной суммы вклада.

Считаем размер счёта через год. Если первоначальная сумма вклада составляла 50000 рублей (т.е. 100%), то через год на счету будет сколько процентов? Правильно, 110%! От 50000 рублей.

Вот и считаем 110% от 50000 рублей:

50000·1,1 = 55000 рублей.

Надеюсь, вы понимаете, что найти 110% от величины означает помножить эту величину на число 1,1? Если не понимаете, почему это именно так, вспоминайте пятый и шестой классы. А именно – связь процентов с дробями и частями.)

Таким образом, прибавка за первый год составит 5000 рублей.

А сколько денег будет на счету через два года? 60000 рублей? К сожалению (а вернее, к счастью), всё не так просто. Весь фокус капитализации процентов состоит в том, что при каждом новом начислении процентов, эти самые проценты будут считаться уже от новой суммы! От той, которая уже лежит на счету в данный момент. А начисленные за предыдущий срок проценты прибавляются к изначальной сумме вклада и, таким образом, сами участвуют в начислении новых процентов! То есть, они становятся полноправной частью общего счёта. Или общего капитала. Отсюда и название – капитализация процентов.

Это в экономике. А в математике такие проценты называются сложными процентами. Или процентами от процентов. ) Их фишка заключается в том, что при последовательном вычислении проценты каждый раз считаются от новой величины. А не от первоначальной…

Стало быть, для подсчёта суммы через два года , нам надо посчитать 110% от той суммы, которая будет на счету через год. То есть, уже от 55000 рублей.

Считаем 110% от 55000 рублей:

55000·1,1 = 60500 рублей.

Значит, процентная прибавка за второй год составит уже 5500 рублей, а за два года – 10500 рублей.

Теперь уже можно догадаться, что через три года сумма на счету будет составлять 110% от 60500 рублей. То есть снова 110% от предыдущей (прошлогодней) суммы.

Вот и считаем:

60500·1,1 = 66550 рублей.

А теперь выстраиваем наши денежные суммы по годам в последовательность:

50000;

55000 = 50000·1,1;

60500 = 55000·1,1 = (50000·1,1)·1,1;

66550 = 60500·1,1 = ((50000·1,1)·1,1)·1,1

Ну и как? Чем не геометрическая прогрессия? Первый член b 1 = 50000 , а знаменатель q = 1,1 . Каждый член больше предыдущего строго в 1,1 раза. Всё в строгом соответствии с определением.)

И сколько же дополнительных процентных бонусов "накапает" вашему папе, пока его 50000 рублей три года лежали на банковском счету?

Считаем:

66550 – 50000 = 16550 рублей

Негусто, конечно. Но это если изначальная сумма вклада – маленькая. А если побольше? Скажем, не 50, а 200 тысяч рублей? Тогда прибавка за три года составит уже 66200 рублей (если посчитать). Что уже очень неплохо.) А если вклад ещё больше? Вот то-то и оно…

Вывод: чем выше изначальный вклад, тем выгоднее становится капитализация процентов. Именно поэтому вклады с капитализацией процентов предоставляются банками на длительные сроки. Скажем, на пять лет.

Также в геометрической прогрессии любят распространяться всякие нехорошие болезни типа гриппа, кори и даже более страшных заболеваний (той же атипичной пневмонии в начале 2000-х или чумы в Средневековье). Отсюда и такие масштабы эпидемий, да…) А всё из-за того, что геометрическая прогрессия с целым положительным знаменателем (q >1) – штука, возрастающая очень быстро! Вспомните размножение бактерий: из одной бактерии получаются две, из двух – четыре, из четырёх – восемь и так далее… С распространением всякой заразы всё то же самое.)

Простейшие задачи по геометрической прогрессии.

Начнём, как всегда, с несложной задачки. Чисто на понимание смысла.

1. Известно, что второй член геометрической прогрессии равен 6, а знаменатель равен -0,5. Найдите первый, третий и четвёртый её члены.

Итак, нам дана бесконечная геометрическая прогрессия, а известен второй член этой прогрессии:

b 2 = 6

Кроме того, нам ещё известен знаменатель прогрессии :

q = -0,5

А найти нужно первый, третий и четвёртый члены этой прогрессии.

Вот и действуем. Записываем последовательность по условию задачки. Прямо в общем виде, где второй член – шестёрка:

b 1 , 6, b 3 , b 4 , …

А теперь приступаем к поискам. Начинаем, как всегда, с самого простого. Можно посчитать, например, третий член b 3 ? Можно! Мы же с вами уже знаем (прямо по смыслу геометрической прогрессии), что третий член (b 3) больше второго (b 2 ) в "q" раз!

Так и пишем:

b 3 = b 2 · q

Подставляем в это выражение шестёрку вместо b 2 и -0,5 вместо q и считаем. И минус тоже не игнорируем, разумеется…

b 3 = 6·(-0,5) = -3

Вот так. Третий член оказался с минусом. Неудивительно: наш знаменатель q – отрицательный. А плюс помножить на минус, будет, знамо дело, минус.)

Считаем теперь следующий, четвёртый член прогрессии:

b 4 = b 3 · q

b 4 = -3·(-0,5) = 1,5

Четвёртый член – снова с плюсом. Пятый член будет опять с минусом, шестой – с плюсом и так далее. Знаки – чередуются!

Так, третий и четвёртый члены нашли. Получилась вот такая последовательность:

b 1 ; 6; -3; 1,5; …

Осталось теперь найти первый член b 1 по известному второму. Для этого шагаем уже в другую сторону, влево. Это значит, что в данном случае второй член прогрессии нам надо не помножить на знаменатель, а поделить.

Делим и получаем:

Вот и всё.) Ответ к задачке будет такой:

-12; 6; -3; 1,5; …

Как вы видите, принцип решения тот же самый, что и в . Знаем любой член и знаменатель геометрической прогрессии – можем найти и любой другой её член. Какой хотим, такой и отыщем.) С той лишь разницей, что сложение/вычитание заменяется на умножение/деление.

Запоминаем: если нам известен хотя бы один член и знаменатель геометрической прогрессии, то мы всегда можем найти любой другой член этой прогрессии.

Следующая задачка, по традиции, из реального варианта ОГЭ:

2.

…; 150; х; 6; 1,2; …

Ну и как? В этот раз ни первого члена нет, ни знаменателя q , задана просто последовательность чисел... Что-то знакомое уже, правда? Да! Похожая задачка уже разбиралась в по арифметической прогрессии!

Вот и не пугаемся. Всё то же самое. Включаем голову и вспоминаем элементарный смысл геометрической прогрессии. Смотрим внимательно на нашу последовательность и соображаем, какие параметры геометрической прогрессии из трёх главных (первый член, знаменатель, номер члена) в ней спрятаны.

Номера членов? Номеров членов нету, да… Но зато есть четыре последовательных числа. Что означает это слово, объяснять на данном этапе смысла не вижу.) Есть ли в этой последовательности два соседних известных числа? Есть! Это 6 и 1,2. Значит, мы можем найти знаменатель прогрессии. Вот и берём число 1,2 и делим на предыдущее число. На шестёрку.

Получаем:

Получим:

x = 150·0,2 = 30

Ответ: x = 30 .

Как вы видите, всё довольно просто. Основная трудность состоит лишь в вычислениях. Особенно тяжко бывает в случае отрицательных и дробных знаменателей. Так что те, у кого проблемы, повторите арифметику! Как работать с дробями, как работать с отрицательными числами и так далее… Иначе здесь будете тормозить нещадно.

А теперь немного видоизменим задачку. Сейчас интересно станет! Уберём в ней последнее число 1,2. Вот такую задачку теперь решим:

3. Выписано несколько последовательных членов геометрической прогрессии:

…; 150; х; 6; …

Найдите член прогрессии, обозначенный буквой х.

Всё то же самое, только двух соседних известных членов прогрессии у нас теперь не стало. В этом и состоит основная проблема. Потому, что величину q через два соседних члена мы так просто определить уже не сможем. Есть у нас шанс справиться с задачей? Конечно!

Распишем неизвестный член " x " прямо по смыслу геометрической прогрессии! В общем виде.

Да-да! Прямо с неизвестным знаменателем!

С одной стороны, для икса мы можем записать вот такое соотношение:

x = 150· q

С другой стороны, этот же самый икс мы имеем полное право расписать и через следующий член, через шестёрку! Поделив шестёрку на знаменатель.

Вот так:

x = 6/ q

Очевидно, теперь можно приравнять оба этих соотношения. Раз уж мы выражаем одну и ту же величину (икс), но двумя разными способами.

Получим уравнение:

Умножая всё на q , упрощая, сокращая, получим уравнение:

q 2 = 1/25

Решаем и получаем:

q = ±1/5 = ±0,2

Опаньки! Знаменатель-то двойной получился! +0,2 и -0,2. И какой из них выбрать? Тупик?

Спокойствие! Да, задачка действительно имеет два решения! Ничего страшного в этом нет. Бывает.) Вы же не удивляетесь, когда, например, получаете два корня, решая обычное ? Вот и здесь та же история.)

Для q = +0,2 мы получим:

X = 150·0,2 = 30

А для q = -0,2 будет:

X = 150·(-0,2) = -30

Получаем двойной ответ: x = 30; x = -30.

Что означает этот интересный факт? А то, что существует две прогрессии , удовлетворяющие условию задачи!

Вот такие:

…; 150; 30; 6; …

…; 150; -30; 6; …

Обе – подходят.) Как вы думаете, из-за чего у нас произошло раздвоение ответов? Как раз из-за ликвидации конкретного члена прогрессии (1,2), идущего после шестёрки. А зная только предыдущий (n-1)-й и последующий (n+1)-й члены геометрической прогрессии, мы уже ничего не можем однозначно сказать про n-й член, стоящий между ними. Возможны два варианта – с плюсом и с минусом.

Но не беда. Как правило, в заданиях на геометрическую прогрессию имеется дополнительная информация, дающая однозначный ответ. Скажем, слова: "знакочередующаяся прогрессия" или "прогрессия с положительным знаменателем" и так далее… Именно эти слова и должны служить зацепкой, какой знак, плюс или минус, следует выбрать при оформлении окончательного ответа. Если же такой информации нет, то тогда – да, задача будет иметь два решения. )

А теперь решаем самостоятельно.

4. Определите, будет ли число 20 членом геометрической прогрессии:

4 ; 6; 9; …

5. Задана знакочередующаяся геометрическая прогрессия:

…; 5; x ; 45; …

Найдите член прогрессии, обозначенный буквой x .

6. Найдите четвёртый положительный член геометрической прогрессии:

625; -250; 100; …

7. Второй член геометрической прогрессии равен -360, а пятый её член равен 23,04. Найдите первый член этой прогрессии.

Ответы (в беспорядке): -15; 900; нет; 2,56.

Поздравляю, если всё получилось!

Что-то не стыкуется? Где-то ответ двойной получился? Читаем внимательно условие задания!

Последняя задачка не выходит? Там ничего сложного.) Работаем прямо по смыслу геометрической прогрессии. Ну и картинку можно нарисовать. Это помогает.)

Как вы видите, всё элементарно. Если прогрессия – коротенькая. А если длинная? Или номер нужного члена очень большой? Хотелось бы, по аналогии с арифметической прогрессией, как-то получить удобную формулу, позволяющую легко находить любой член любой геометрической прогрессии по его номеру. Не помножая много-много раз на q . И такая формула есть!) Подробности – в следующем уроке.

22.09.2018 22:00

Геометрическая прогрессия, наряду с арифметической, является важным числовым рядом, который изучается в школьном курсе алгебры в 9 классе. В данной статье рассмотрим знаменатель геометрической прогрессии, и то, как его значение влияет на ее свойства.

Определение прогрессии геометрической

Для начала приведем определение этого числового ряда. Прогрессией геометрической называют такой ряд рациональных чисел, который формируется путем последовательного умножения его первого элемента на постоянное число, носящее название знаменателя.

Например, числа в ряду 3, 6, 12, 24, ... - это прогрессия геометрическая, поскольку если умножить 3 (первый элемент) на 2, то получим 6. Если 6 умножить на 2, то получим 12, и так далее.

Члены рассматриваемой последовательности принято обозначать символом ai, где i - это целое число, указывающее на номер элемента в ряду.

Приведенное выше определение прогрессии можно записать на языке математики следующим образом: an = bn-1 * a1, где b - знаменатель. Проверить эту формулу легко: если n = 1, то b1-1 = 1, и мы получаем a1 = a1. Если n = 2, тогда an = b * a1, и мы снова приходим к определению рассматриваемого ряда чисел. Аналогичные рассуждения можно продолжить для больших значений n.

Знаменатель прогрессии геометрической


Число b полностью определяет, какой характер будет носить весь числовой ряд. Знаменатель b может быть положительный, отрицательный, а также иметь значение больше единицы или меньше. Все перечисленные варианты приводят к разным последовательностям:

  • b > 1. Имеет место возрастающий ряд рациональных чисел. Например, 1, 2, 4, 8, ... Если элемент a1 будет отрицательным, тогда вся последовательность будет возрастать только по модулю, но убывать с учетом знака чисел.
  • b = 1. Часто такой случай не называют прогрессией, поскольку имеет место обычный ряд одинаковых рациональных чисел. Например, -4, -4, -4.

Формула для суммы

Перед тем как перейти к рассмотрению конкретных задач с использованием знаменателя рассматриваемого вида прогрессии, следует привести важную формулу для суммы ее первых n элементов. Формула имеет вид: Sn = (bn - 1) * a1 / (b - 1).

Получить это выражение можно самостоятельно, если рассмотреть рекурсивную последовательность членов прогрессии. Также заметим, что в приведенной формуле достаточно знать только первый элемент и знаменатель, чтобы найти сумму произвольного числа членов.

Бесконечно убывающая последовательность


Выше было дано пояснение, что она собой представляет. Теперь, зная формулу для Sn, применим ее к этому числовому ряду. Так как любое число, модуль которого не превышает 1, при возведении в большие степени стремится к нулю, то есть b∞ => 0, если -1

Поскольку разность (1 - b) всегда будет положительной, независимо от значения знаменателя, то знак суммы убывающей бесконечно прогрессии геометрической S∞ однозначно определяется знаком ее первого элемента a1.

Теперь рассмотрим несколько задач, где покажем, как применять полученные знания на конкретных числах.

Задача № 1. Вычисление неизвестных элементов прогрессии и суммы

Дана прогрессия геометрическая, знаменатель прогрессии 2, а ее первый элемент 3. Чему будут равны ее 7-й и 10-й члены, и какова сумма ее семи начальных элементов?

Условие задачи составлено достаточно просто и предполагает непосредственное использование вышеназванных формул. Итак, для вычисления элемента с номером n используем выражение an = bn-1 * a1. Для 7-го элемента имеем: a7 = b6 * a1, подставляя известные данные, получаем: a7 = 26 * 3 = 192. Аналогичным образом поступаем для 10-го члена: a10 = 29 * 3 = 1536.

Воспользуемся известной формулой для суммы и определим эту величину для 7-ми первых элементов ряда. Имеем: S7 = (27 - 1) * 3 / (2 - 1) = 381.

Задача № 2. Определение суммы произвольных элементов прогрессии

Пусть -2 равен знаменатель прогрессии в геометрической прогрессии bn-1 * 4, где n - целое число. Необходимо определить сумму с 5-го по 10-й элемент этого ряда включительно.

Поставленная проблема не может быть решена непосредственно с использованием известных формул. Решить ее можно 2-мя различными методами. Для полноты изложения темы приведем оба.

Метод 1. Идея его проста: необходимо рассчитать две соответствующие суммы первых членов, а затем вычесть из одной другую. Вычисляем меньшую сумму: S10 = ((-2)10 - 1) * 4 / (-2 - 1) = -1364. Теперь вычисляем большую сумму: S4 = ((-2)4 - 1) * 4 / (-2 - 1) = -20. Отметим, что в последнем выражении суммировались только 4 слагаемых, поскольку 5-е уже входит в сумму, которую требуется вычислить по условию задачи. Наконец, берем разницу: S510 = S10 - S4 = -1364 - (-20) = -1344.

Метод 2. Перед тем, как подставлять цифры и считать, можно получить формулу для суммы между членами m и n рассматриваемого ряда. Поступаем абсолютно так же, как в методе 1, только работаем сначала с символьным представлением суммы. Имеем: Snm = (bn - 1) * a1 / (b - 1) - (bm-1 - 1) * a1 / (b - 1) = a1 * (bn - bm-1) / (b - 1). В полученное выражение можно подставлять известные числа и вычислять конечный результат: S105 = 4 * ((-2)10 - (-2)4) / (-2 - 1) = -1344.

Задача № 3. Чему равен знаменатель?


Пусть a1 = 2, найдите знаменатель прогрессии геометрической, при условии, что ее бесконечная сумма составляет 3, и известно, что это убывающий ряд чисел.

По условию задачи нетрудно догадаться, какой формулой следует пользоваться для ее решения. Конечно же, для суммы прогрессии бесконечно убывающей. Имеем: S∞ = a1 / (1 - b). Откуда выражаем знаменатель: b = 1 - a1 / S∞. Осталось подставить известные значения и получить требуемое число: b = 1 - 2 / 3 = -1 / 3 или -0,333(3). Можно качественно проверить этот результат, если вспомнить, что для этого типа последовательности модуль b не должен выходить за пределы 1. Как видно, |-1 / 3|

Задача № 4. Восстановление ряда чисел

Пусть даны 2 элемента числового ряда, например, 5-й равен 30 и 10-й равен 60. Необходимо по этим данным восстановить весь ряд, зная, что он удовлетворяет свойствам прогрессии геометрической.

Чтобы решить задачу, необходимо для начала записать для каждого известного члена соответствующее выражение. Имеем: a5 = b4 * a1 и a10 = b9 * a1. Теперь разделим второе выражение на первое, получим: a10 / a5 = b9 * a1 / (b4 * a1) = b5. Отсюда определяем знаменатель, взяв корень пятой степени от отношения известных из условия задачи членов, b = 1,148698. Полученное число подставляем в одно из выражений для известного элемента, получаем: a1 = a5 / b4 = 30 / (1,148698)4 = 17,2304966.

Таким образом, мы нашли, чему равен знаменатель прогрессии bn, и геометрическую прогрессию bn-1 * 17,2304966 = an, где b = 1,148698.

Где применяются прогрессии геометрические?


Если бы не существовало применения этого числового ряда на практике, то его изучение сводилось бы к чисто теоретическому интересу. Но такое применение существует.


Ниже перечислены 3 самых знаменитых примера:

  • Парадокс Зенона, в котором ловкий Ахиллес не может догнать медленную черепаху, решается с использованием понятия убывающей бесконечно последовательности чисел.
  • Если на каждую клетку шахматной доски класть зерна пшеницы так, что на 1-ю клетку положить 1 зерно, на 2-ю - 2, на 3-ю - 3 и так далее, то чтобы заполнить все клетки доски понадобится 18446744073709551615 зерен!
  • В игре "Башня Ханоя", чтобы переставить диски с одного стержня на другой, необходимо выполнить 2n - 1 операций, то есть их число растет в геометрической прогрессии от количества используемых дисков n.

Улица Киевян, 16 0016 Армения, Ереван +374 11 233 255


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении